
UNIVERSITÄT LINZ
JOHANNES KEPLER

JKU

Technisch-Naturwissenschaftliche

Fakultät

Automated Consistency Management
Framework for the Model Based Software

Development

DISSERTATION

zur Erlangung des akademischen Grades

Doktor

im Doktoratsstudium der

Technischen Wissenschaften

Eingereicht von:

Alexander Reder

Angefertigt am:

Institute für Systems Engineering und Automation

Beurteilung:

Univ.-Prof. Dr. Alexander Egyed, MSc (Betreuung)
Assoz. Univ.-Prof. Mag. Dr. Wieland Schwinger, MSc

Linz, Jänner, 2013

Images/wap_small.eps
Images/tnf.eps




Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig
und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen
Stellen als solche kenntlich gemacht habe.

Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdoku-
ment identisch.

Linz, 16.Jänner, 2013

Alexander Reder





Abstract

The development of a software product is a multistage process and we know
the later an error is discovered the more costly it is to repair it. Erroneous
implementation of requirements are often found very late because the early
stages of the development process lack efficient support for detecting and
avoiding errors. Integrated development environments used to implement
software products provide support for detecting errors, but the detection is
limited to the programming languages. These environments typically are not
able to check if code really implements the costumer requirements correct,
i. e., if the program is semantically correct. Perhaps, this can be done in the
design stage, however, the error detection of design modeling tools are often
limited to specific languages. Furthermore, many approaches are batch-based
where the error detection (the detection of inconsistencies between require-
ments and their realization) is done occasionally, usually after it has been
triggered manually. This time consuming process has the downside this it
may provide error feedback late and in potentially large quantities depending
on the time that has passed. Apart from that, detecting inconsistencies is
worthless if it is not known what to do with this information. Eventually
inconsistencies need to be resolved and there are limited alternatives on how
to do so. Currently, no solution exists that combines the detection of incon-
sistencies with their eventual resolutions, including their side effects, in an
scalable, efficient, and incremental technology. This thesis represents an ap-
proach for model-based software development that supports the user during
the entire life cycle of an inconsistency: from the detection to resolution. As
a proof of concept, the approach is implemented as an Eclipse plug-in for
the IBM Rational Software Architect, the UML modeling language and the
OCL constraint language. While the approach is generic and not limited to
these tools and languages, the tool implementation was used for the evalua-
tion of applicability,correctness, and scalability. It shows that the approach
provides the functionality to define arbitrary constraints, supports instant
detection of inconsistencies and proposes solutions how to resolve them as
well as calculating the side effects of this solution.



Kurzfassung

Die Entwicklung eines Software Produktes ist ein mehrstufiger Prozess und
es ist bekannt, dass je später ein Fehler gefunden wird, umso kostspieliger
es ist diesen zu beseitigen. Fehlerhaft umgesetzte Anforderungen werden oft
sehr spät entdeckt, da in den ersten Phasen des Entwicklungsprozesses kaum
effektive Methoden zur Erkennung und Vermeidung von Fehlern existieren.
Werkzeuge, die zur Implementierung verwendet werden, besitzen zwar ef-
fektive Methoden zur Erkennung von Fehlern, allerdings sind diese Metho-
den beschränkt auf die verwendete Programmiersprache. Diese Werkzeuge
sind in der Regel nicht im Stande zu überprüfen, ob die Kundenanforderun-
gen korrekt umgesetzt wurden, d. h. ob das Programm semantisch korrekt
ist. Unter Umständen kann das in der Design Phase erfolgen, jedoch die
Fehlererkennung der Modellierungswerkzeuge beschränkt sich meist auf spez-
ifische Modellierungssprachen. Darüber hinaus sind viele der verwendeten
Ansätze auf sogenannter Stapel Auswertung aufgebaut, wo die Fehlererken-
nung (die Erkennung von Inkonsistenzen zwischen Anforderungen und deren
Realisierung) sehr sporadisch passiert, gewöhnlich erst dann, wenn sie von
Hand angestoßen wird. Dieser zeitaufwendige Prozess hat denn Nachteil,
dass es späte Rückmeldungen über Fehler gibt und sehr viel Information auf
einmal liefert, abhängig von der Zeit, die seit der letzten Überprüfung ver-
gangen ist. Abgesehen davon ist die Erkennung von Inkonsistenzen wertlos,
wenn man nicht weiß, was mit dieser Information anzufangen ist. Irgend-
wann müssen diese Inkonsistenzen aufgelöst werden und es existiert eine
beschränkte Anzahl an Alternativen dafür. Aktuell existiert keine Lösung,
die die Erkennung von Inkonsistenzen, deren Auflösung und die Berechnung
derer Effekte, auf eine skalierbare, effiziente und inkrementeller Basis unter-
stützt. Diese Arbeit stellt einen Ansatz für die modellbasierte Softwareen-
twicklung dar, der den Benutzer während des gesamten Lebenszyklus einer
Inkonsistenz unterstützt: von der Erkennung bis zu dessen Auflösung. Für
eine Machbarkeitsstudie wurde dieser Ansatz als Eclipse basiertes Plug-In
für den IBM Rational Software Architect, mit UML als Modellierungssprache
und OCL als Sprache für die Regeln, realisiert. Während dieser Ansatz gener-
isch ist und nicht auf eine Modellierungssprache oder Regelsprache limitiert
ist, evaluiert die Werkzeug Implementierung die Anwendbarkeit, Korrektheit
und die Skalierbarkeit. Es zeigt, dass der Ansatz die Funktionen zur Er-
stellung beliebiger Regeln, der sofortigen Erkennung von Inkonsistenzen und
dem Vorschlagen von Lösungen als auch der Berechnung deren Effekte im
gesamten Modell, unterstützt.



Danksagungen

Besonderen Dank möchte ich meinem Betreuer Alexander Egyed sagen, der
es mir ermöglicht hat, in Universitärem Umfeld diese Arbeit anzufertigen
als auch für die wertvolle Unterstützung die er mir in den letzten Jahren
zukommen lies. Darüber hinaus möchte ich auch noch meinem Zweitbetreuer
Wieland Schwinger dank sagen, für die investierte Zeit und die wertvollen
Anregungen.

Auch möchte ich allen danken, die mich im Laufe meines Studiums und
auch während meiner Arbeit laufend unterstützt und begleitet haben. Auch
möchte ich dem FWF für die finanzielle Unterstützung danken, welche mir
die Präsenz auf einigen Konferenzen ermöglichte.

Einen ganz besonderen Dank möchte ich auch noch meiner Familie aus-
drücken, die es mir überhaupt erst ermöglicht hat, diesen Bildungsweg ein-
zuschlagen und mir auch in schwierigen Zeiten immer zur Seite gestanden
ist. Des Weiteren auch noch einen ganz besonderen Dank an meine Part-
nerin, die mir als gutes Beispiel voran gegangen ist und mir immer wieder
die notwendige Motivation gegeben hat, dieses Werk hier zu vollenden.





Contents

List of Figures xiii

List of Tables xv

Glossary xvii

1 Introduction 1

1.1 Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Final Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Intermediate Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.1 Building an Overview of Existing Work . . . . . . . . . . . . . . . 9
1.6.2 Approach to Detect Inconsistencies . . . . . . . . . . . . . . . . . . 9
1.6.3 Generating Solutions to Repair the Detected Inconsistencies . . . . 9
1.6.4 Preparation of the Repair Actions to Resolve the Inconsistencies . 9
1.6.5 Realization in a Software Tool . . . . . . . . . . . . . . . . . . . . 10

1.7 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Illustration, Background and Definitions 11

2.1 Introductory Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Notation used in this Thesis . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Structural Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Behavior Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Domain Language Abstraction . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Constraint Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Basic Constraint Elements . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Concrete Constraint Validation . . . . . . . . . . . . . . . . . . . . 19

2.5 Incremental Consistency Checking . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Understanding an Inconsistency — What Caused an Inconsistency . . . . 22

ix



CONTENTS

2.7 Repairing an Inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7.1 Repairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7.2 Side Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Keeping the Performance in Mind . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Related Work 29

3.1 Consistency Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Formalizing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Detecting Inconsistencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Resolving Inconsistencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Basic Principles 39

4.1 Concept of Expected and Validated Results . . . . . . . . . . . . . . . . . 39
4.2 Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Conjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3 Negated Conjunctions . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.4 Disjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.5 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.6 Universal Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.7 Existential Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.8 Equality Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.9 Inequality Relations . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Property Call Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 CiM Approach 49

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Stage 1: Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Stage 2: The Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Calculating The Scope . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.2 Triggering a Re-Validation . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Stage 3: The Cause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5 Stage 4: Repairs and Side Effects . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.1 Repair Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.2 Side Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Tool Implementation 79

6.1 IBM Rational Software Architect Integration . . . . . . . . . . . . . . . . 79
6.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Graphical Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

x



CONTENTS

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Evaluation and Discussion 87
7.1 Generic Applicability — RQ 1 . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1.1 Design Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.1.2 Constraint Language . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Correctness and Appropriateness — RQ 2 . . . . . . . . . . . . . . . . . . 89
7.2.1 Correct Inconsistency Detection . . . . . . . . . . . . . . . . . . . 89
7.2.2 Correct Scope for Re-Validation . . . . . . . . . . . . . . . . . . . 89
7.2.3 Correct Cause Calculation . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.4 Appropriateness of the Generated Repairs . . . . . . . . . . . . . . 95

7.3 Performance and Scalability — RQ 3 . . . . . . . . . . . . . . . . . . . . . 97
7.3.1 Memory Consumption . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3.2 Response Time and Scalability . . . . . . . . . . . . . . . . . . . . 99

7.4 Limitations of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.4.1 Limitation in the General Applicability . . . . . . . . . . . . . . . 101
7.4.2 Limitations in Appropriateness . . . . . . . . . . . . . . . . . . . . 102
7.4.3 Limitations in Performance and Scalability . . . . . . . . . . . . . 102

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 Conclusion and Ongoing Work 103
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2 Ongoing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

References 107

A Constraints 117

Curriculum Vitae 121

xi



CONTENTS

xii



List of Figures

1.1 From the Customer Requirements to the Delivered Software Product . . . 2
1.2 Relative Cost of Fixing an Error [15] . . . . . . . . . . . . . . . . . . . . . 3
1.3 Model Development Workflow . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 UML Class Diagram of a Video on Demand System . . . . . . . . . . . . 12
2.2 State Machine Diagram for the Class ‘VideoServer‘ . . . . . . . . . . . . . 14
2.3 UML Sequence Diagram for Selecting and Starting a Video . . . . . . . . 14
2.4 Meta Object Facility Levels [79] . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Overlapping Scope Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Working of the CiM Approach . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Excerpt of the example Constraint, UML Class and Sequence Diagram . . 51
5.3 Validation Tree for γ1(wait) — Step 1 . . . . . . . . . . . . . . . . . . . . 51
5.4 Validation Tree for γ1(wait) — Step 2 . . . . . . . . . . . . . . . . . . . . 53
5.5 Validation Tree for γ1(wait) — Step 3 . . . . . . . . . . . . . . . . . . . . 54
5.6 Complete Validation Tree for γ1(wait) . . . . . . . . . . . . . . . . . . . . 55
5.7 Validation Tree for γ1(connect) . . . . . . . . . . . . . . . . . . . . . . . . 58
5.8 Changing the Name of Operation ‘pause‘ to ‘wait‘ in the Validation Tree

for γ1(wait) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.9 Changing the Name of Operation ‘wait‘ to ‘pause‘ in the Validation Tree

for γ1(wait) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.10 Changing the Name of Message ‘wait‘ to ‘stop‘ in the Validation Tree for

γ1(wait → stop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.11 Validation Tree for γ1(wait) with Expected and Validated Results . . . . 65
5.12 Validation Tree for γ2(Display) . . . . . . . . . . . . . . . . . . . . . . . . 66
5.13 Repair Tree Generation for γ1(wait) — Step 1 . . . . . . . . . . . . . . . 67
5.14 Repair Tree Generation for γ1(wait) — Step 2 . . . . . . . . . . . . . . . 68
5.15 Repair Tree Generation for γ1(wait) — Step 3 . . . . . . . . . . . . . . . 69
5.16 Complete Repair Tree for γ1(wait) . . . . . . . . . . . . . . . . . . . . . . 70
5.17 Repair Tree for γ2(Display) . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.18 Combining Alternative Repair Action . . . . . . . . . . . . . . . . . . . . 71
5.19 Flattened Repair Tree for γ2(Display) . . . . . . . . . . . . . . . . . . . . 72
5.20 Overlaps that Cause Side Effects in Constraint Validations . . . . . . . . 73

xiii



LIST OF FIGURES

5.21 Negative Side Effect in Validation Tree γ1(connect) . . . . . . . . . . . . . 73
5.22 Positive Side Effect in Validation Tree γ1(pause) . . . . . . . . . . . . . . 74
5.23 Validation- and Repair Tree for γ4(V ideoServer) . . . . . . . . . . . . . . 75

6.1 Overview of the CiM Approach Implementation for the IBM Rational
Software Architect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Constraint View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Constraint Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4 Validation Tree View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.5 Repair Tree View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Combinations of Expression Validations in an Inconsistent Validation Tree 94
7.2 Repairs depending on the Model Size . . . . . . . . . . . . . . . . . . . . . 97
7.3 Repairs depending on the Validation Tree Size . . . . . . . . . . . . . . . 97
7.4 Re-Validation Time Depending on the Model Size . . . . . . . . . . . . . . 100
7.5 Re-Validation Time Depending on the Validation Tree Size . . . . . . . . 100
7.6 Repair Generation and Side Effect Calculation Depending on the Model

Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.7 Repair Generation and Side Effect Calculation Depending on the Valida-

tion Tree Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xiv



List of Tables

2.1 Commonly used Operation provided by OCL . . . . . . . . . . . . . . . . 19

4.1 Validations of a Conjunction γ := a ∧ b . . . . . . . . . . . . . . . . . . . . 40
4.2 Validations of a Negated Conjunction γ := ¬(a ∧ b) . . . . . . . . . . . . . 42
4.3 Validations of a Disjunction γ := a ∨ b . . . . . . . . . . . . . . . . . . . . 42
4.4 Validations of an Implication γ := a ⇒ b . . . . . . . . . . . . . . . . . . . 43
4.5 Validations of an Universal Quantifier γ := ∀a ∈ A : a . . . . . . . . . . . 44
4.6 Validations of a negated Universal Quantifier γ := ¬∀a ∈ A : a . . . . . . 45
4.7 Validations of an Existential Quantifier γ := ∃a ∈ A : a . . . . . . . . . . . 46
4.8 Validations of an Equality Relation γ := a = b . . . . . . . . . . . . . . . . 46
4.9 Validations of an Inequality Relation γ := a 6= b . . . . . . . . . . . . . . . 47

5.1 Scope for the Boolean Expression Types and Argument Results . . . . . . 56
5.2 Cause of Scope Elements for the Boolean Expression Types . . . . . . . . 62
5.3 Repairing Inconsistencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1 List of Models Used in the Evaluation . . . . . . . . . . . . . . . . . . . . 90
7.2 Abstract and Concrete Repairs Generated . . . . . . . . . . . . . . . . . . 96
7.3 Memory Overhead Compared to MDT OCL . . . . . . . . . . . . . . . . . 98

xv



LIST OF TABLES

xvi



Glossary

AMOR Adaptable Model Versioning

ARL Abstract Rule Language

CAMUS Compute All Minimal Unsatisfiable Subsets

CiM Consistency in Models

CLP Constraint Logic Programming

CNF Conjunctive Normal Form

CQC Checking Query Containment

CSP Constraint Satisfaction Problem

CVS Concurrent Versions System

DOPLER Decision-Oriented Product Line Engineering for effective Reuse

EMF Eclipse Modeling Framework

ER Entity Relationship model

HUMUS High-level Union of Minimal Unsatisfiable Sets

IDE Integrated Development Environment

MCS Minimal Correcting Set

MDT Modeling Development Tools

MOF Meta Object Facility

MUS Minimal Unsatisfiable Set

OCL Object Constraint Language

PLE Product Line Engineering

RSA (IBM) Rational Software Architect

xvii



GLOSSARY

s-DAG suggestion-Directed Acyclic Graphs

SAT Satisfiability Problem

SMT Satisfiability Modulo Theories

SPL Software Product Line

SVN Subversion

UML Unified Modeling Language

XMI XML Metadata Interchange

XML Extensible Markup Language

xviii



Chapter 1

Introduction

“To err is human, but to really foul things up requires a computer.”
Paul R. Ehrlich, American Scientist, 1932

When using a software product, malfunctions and incorrectly/incomplete imple-
mented requirements cause problematic failures that are costly to localize and expensive
to repair. To reduce the danger of such situations, the stakeholder requirements and
the quality of the software product should be validated in each step of the software de-
velopment process. In this thesis we present a framework that enables the validation of
arbitrary model constraints during design modeling. The stakeholder requirements as
well as well formedness rules from the design language build the set of constraints.

1.1 Starting Point

The development of a software product is a vital process with the goal to achieve the re-
quirements that are specified by the customer. However, during the development process
one or more developers try to realize the customers needs. Unfortunately, requirements
can be interpreted in many ways, especially at the beginning at the development process
and the delivered product does not conform to the product expected by the customer
(Figure 1.1).

In the software development process different tools are used that focus on different
aspects of the software development, often from the perspective of different stakehold-
ers, such as customers, analysts, designers, implementer, tester, or maintainer. Software
development combines these different perspectives in a multistage process. At the be-
ginning is the elicitation of requirements from the customer and at the end the complete
product – that should meet the customer needs – is shipped to the customer. In between
a team of developers realize the customer requirements. So, the phases of the software
development are the elicitation of requirements, designing and implementing the system,
shipping it to the customer, and its verification and maintenance.

In the traditional software development the three essential models are the Water Fall
model by Royce [14, 97], Rook’s V-Model [96], and Boehm’s Spiral Model [16]. While

1



1. INTRODUCTION

. . .

Design Code

Requirements
Delivered Product

Expected Product

Customer Customer

Developers

Figure 1.1: From the Customer Requirements to the Delivered Software Product

the water fall and V-model are highly structured, the spiral model is more agile, but
all include similar stages and during the years tools have been developed to support
the participants in the software system development process in realizing their goals.
On each stage of this process the needs of the costumer, the team of developers and
designers must be considered as well as the domain specific needs, like the model and
implementation languages, the environmental constraints, etc.

Aside from the traditional software development methods, more and more agile meth-
ods [3] have become popular, like extreme programming [10] or Scrum [99]. These meth-
ods are distinguished by a faster incremental and iterative development process. All
processes have in common the desire to specify the software quickly and earlier – and
they all desire to analyze the correctness and consistency early on.

The different tools used during the software development are rarely interrelated, i. e.,
a tool that is made for the elicitation of requirements [17] is not connected to the tool
that is made for planning or designing the software product. Thus, it is hardly possible
to validate if the designed product conforms the requirements, because the tools are
able to validate the design against the used domain specifications from the underlying
design language, if any. However, Boehm [15] describes the economics of software engi-
neering and the costs to repair errors in the different stages of the software development
process, beginning at the elicitation of the requirements until the installation at the cos-
tumer. Figure 1.2 shows the relative cost of fixing an error caused by an inconsistency
between the requirements and their implementation in the single development stages.
This shows how important it is to detect and resolve errors as early as possible during
the development process.

2



1.1 Starting Point

Req
ui

re
m

en
ts

Sp
ec

ifi
ca

tio
n

Pla
nn

in
g

Des
ig
n

Im
pl

em
en

ta
tio

n

In
te

gr
at

io
n

Dep
loy

m
en

t
1 2 3 4

10

30

200

R
el

at
iv

e
C

os
t

of
F

ix
in

g
an

E
rr

or

Figure 1.2: Relative Cost of Fixing an Error [15]

While the stakeholder needs/requirements are better understood later in the devel-
opment process, errors are more costly to repair — an exponential growth as Figure 1.2
shows. If, for example, an error is detected in the planning or design phase and not at
the implementation phase, the costs can be reduced by up to 66%. Even more drastic is
the situation if the error is detected in the deployment phase, where the costs are more
than 50 times higher than in the planning or design phase. Unfortunately, the tools used
for the implementation rarely provide an adequate support in detecting design errors,
especially when it comes to requirements others than the ones from the used design
language — the stakeholder requirements. Validating the design and implementation
specific needs is almost never integrated in the development tools, especially in tools to
implement the software product. Integrated Development Environments (IDE) such as
Eclipse [38] or NetBeans [2] are well appointed to validate syntactically and best practice
constraints for common used programming languages such as Java or C/C++ and can
also be customized by the implementer. However, as these tools are used relatively late
in the development process, they provide few support in detecting errors regarding stake-
holder requirements — inconsistencies between the specifications and their realizations.
Hence, there is need for appropriate tool support in validating customized constraints
early in the development process — the planning and design phase. This thesis focuses
primarily on these phases but it will be shown also that the proposed approach can be
applied on various domains and phases of the software development process.

Over the last decade much research has been going on in this area that addresses the
consistency checking during model based software development. It started with batch

3



1. INTRODUCTION

based approaches [46] that evaluate the consistency of software models periodically. This
is a time consuming process and may lead to overwhelming amount of information for
designers, if the validation is done in long intervals. However, these approaches are still
state-of-the-art, because of they are easy to implement and are able to define hierarchical
constraints. However, they are rarely used due to their inconvenient character. In the last
years more and more approaches are developed that have incremental characteristics [39,
54, 57, 73, 95], i. e., inconsistencies are detected directly from a change made in the
design model. Unfortunately, these approaches are often specialized to single modeling
and design languages. Furthermore, the performance depends on the complexity of the
constraints, which is expected but given that these approaches typically validate all
constraints, this is expensive, i. e., they perform well on small constraints but not on
complex, hierarchically structured constraints as shown in [92].

Detecting inconsistencies is but one facet of managing the consistency of software
systems. When inconsistencies are detected they must be resolved or at least, in the spirit
of tolerating inconsistencies [7], the consequences of an inconsistency on the software
product should be visualized. To resolve an inconsistency, information must be known
on how the inconsistency can be resolved. This is a much more complicated process
than detecting inconsistencies, because it must be known what parts need changing and
how these parts must be changed to resolve the inconsistency. To determine both, what
and how, is important and difficult: Important because it must support the modeler in
deciding where to resolve an inconsistency and difficult because in certain situations no
concrete value for how to resolve an inconsistency can be determined.

In the last years the scientific community on consistency management is concentrat-
ing on the resolution of detected inconsistencies. A distinction is made between ap-
proaches that detect single inconsistencies and combinations thereof [40, 41, 74, 95, 110]
or approaches that resolve all inconsistencies at once [71]. Both have their advantages
and drawbacks that depend on the situation where they are used. Batch based solutions
are able to generate a complete consistent model, if one exists. These approaches are
based on Prolog or SAT solvers [56, 65, 67] and the generation of complete models take
some time. Unfortunately, these approaches generate complete consistent models only
— this requires a set of constraints that do not contradict each other, a prerequisite that
might not necessarily hold for arbitrary definable constraints as mentioned before.

On the other hand, approaches that consider the inconsistencies in isolation provide
a restricted view of the solutions for an inconsistency where the designer has to decide
what solution must be applied. A challenge that these approaches struggle with is to
detect the effects on other constraints, i. e., the side effects that the changes have on
other constraints [90]. Without these side effects the resolution of an inconsistency can
be very hard. Fortunately, some approaches are able to detect the side effects of the
inconsistency resolutions (e. g., [41]). The inconsistencies are determined by executing
a proposed resolution on the model an track the effects. This is time consuming as
there might exist many alternatives that must be checked and each alternative acts like
a normal model change.

4



1.2 Motivation

The time it takes to detect inconsistencies, generate resolutions and determine the
overall effects of the resolution is very important for incremental approaches. Miller [72]
analyzed the time that is acceptable for the user to wait during interactive work. The
user4 expects a response of a few 100ms after making a modification in the model. An
occasional multisecond response time is likely to be acceptable too. Even though, if an
approach is used that validates a modification in a few milliseconds, the testing of an
inconsistency resolution easily exceeds this timings [92]. For example, if the validation of
a constraint takes about 10ms, 10 constraints are affected that cause 10 inconsistencies
with 10 potential resolutions. The total time it takes to provide all the information, the
inconsistency, the resolutions and their side effects, will take 10s. This time is far away
from the upper limit of acceptance and earlier publications ([39, 41]) show that these
assumptions are realistic and for larger models this number will increase. The number of
constraints, inconsistencies, resolutions, and side effects cannot be reduced. Therefore,
only a reduction of the re-validation time can improve this, because a re-validation is
needed to determine the side effects of an inconsistency resolution.

1.2 Motivation

The multistage process of developing a software product comes with its own meta models
for each phase and their predefined constraints as well as people that participate in these
phases [19]. Nearly all phases of the software development process define artifacts which
are often captured in model form and thus have to deal with errors and inconsisten-
cies that arise regarding predefined constraints (constraints derived from the used meta
model and not from the user requirements) but solutions differ in the expressiveness and
usefulness. Especially in the early phases of the development process the support for
detecting and managing inconsistencies is rather low which leads to increasing costs of
a software product as was discussed earlier.

This thesis is in line with capabilities in most modern IDEs (e. g., Eclipse [38], Net-
Beans [2]) that provide instant feedback on errors (i. e., currently in form of syntax
errors) as well as suggestions for completing/correcting errors (i. e., currently in form
of code completion). However, these tools are used in a late stage where errors may
already have cause the most harm (Figure 1.2) and the error detection and completion
is limited to simple, often syntactic language constructs. The need of convenient sup-
port to validate if a software product conforms the requirements of the stakeholders is
given in the earlier phases. As mentioned above, this would help to reduce the overall
development and maintenance costs of a software product and will also increases the
costumer satisfaction.

Some of the tools used provide excellent support in detecting inconsistencies and
solutions to resolve them, especially during the implementation phase. Integrated devel-
opment environments (IDE), for example, are such tools where the software developer
gets informed about syntax and design errors that violated the rules or design guidelines
of a specific programming language (inconsistencies between the language specification
and its usage).

5



1. INTRODUCTION

1.3 Vision

Our vision is a conceptual framework that can be used and adapted to be used in nearly
each phase of the software development process where arbitrary constraints can be de-
fined. The models can be syntactically correct but they may be inconsistent regarding
the stakeholder requirements which may lead to errors in the implementation. In Fig-
ure 1.3 a typical workflow of developing a model with our envisioned framework is shown.
The model in the center provides elements and their characterizing properties. For the
proposed approach to be applicable, the tools that will be used must provide a mecha-
nism to access the elements and their properties. The starting point of the circle is the
designer. The dark arrows are the information flow from and to the designer and the
light arrows show the automated information flow in the envisioned framework.

The designer adds and deletes elements or to modify properties of an element to
develop a model. The vision is an automated inconsistency detection and resolution
mechanism, based on user definable constraints. The source of the constraints can be
a) domain specific constraints (e. g., from the modeling language) and b) from project
requirements (e. g., stakeholders or environment) that can be expressed on the meta
model level.

To detect inconsistencies, concrete elements from the model must be determined on
which the constraints will be validated. If the validation detects an inconsistency in the
model, all the elements that are involved in the inconsistencies are determined. Based on
a white box analyzes of the constraint validations, repairs are generated. Furthermore,
the effects (side effects) of the calculated repairs on other constraint validations must
be calculated (e. g., if new inconsistencies might exists or other inconsistencies can be
resolved too). The repairs should now guide the designer in resolving the inconsistencies
in the model and the designer has to decide which repair or part of a repair must be
applied on the model and when the changes will be applied.

As can be seen in Figure 1.3, changes in the model are made by the designer only,
but the framework supports the designer with the prepared statements of how to change
the model, to resolve an inconsistency and fulfill the set of defined constraints. This
automated workflow is triggered each time when a change is made in the model, i. e.,
the guidance is triggered after a change is made by the designer.

The vision of the proposed system should help to improve the quality of a software
product while reducing the time and costs of developing and maintaining it. In the
following sections the research questions, the final goal and the steps to reach this vision
are explained as well as the expected difficulties to deal with.

1.4 Research Questions

RQ 1: How can models and constraints be generalized to become applicable for man-
aging the consistency in a broad applications scope?

RQ 2: Is it possible to generate appropriate and directly executable repair alternatives
for inconsistencies without the loss of the generalizable applicability?

6



1.5 Final Goal

Repairs/Side Effects Constraints

Model

Repair Actions Inconsistencies

Add/Delete/Modify
Elements

Definition
Guidance

D
etectin

g

Generating

C
al

cu
la

ti
n

g

Elements and Properties
to Change Conflicting Elements

Property Values Elements to Validate

Figure 1.3: Model Development Workflow

RQ 3: Can the proposed solution be implemented and is it commonly usable in terms
of performance (response time, memory usage) to enable interactive work?

The questions are reflected in the following section. In this section we show a plan
of intermediate goals to reach the proposed final goal of this thesis and to answer these
question. It also reflects the development history of this thesis.

1.5 Final Goal

The final goal of this work is an consistency management framework that is able to
automatically

1. process user definable constraints on a model of elements and their characterizing
properties,

2. detect inconsistencies based on the set of constraints,

3. generate solutions to resolve the detected inconsistencies,

4. prepare the solutions to be executable by a designer, and

7



1. INTRODUCTION

5. visualize the inconsistencies and their solutions in a software tool that is used in
the software product development as well as the evaluation of the approach.

The proposed solution should be generalizable and thus be applicable on any domain
language that consist of elements and properties that characterize them (e. g., UML [81],
Entity Relationship Models [25], . . . ), and constraint language that must be convertible
to first order predicate logic [8] (e. g., OCL [80], Alloy [56], . . . ).

To evaluate the proposed approach and to answer the research questions, a prototype
is implemented for the UML and OCL in the IBM Rational Software ArchitectTM(RSA).
The implementation tracks the changes made by the user and calculates new inconsis-
tencies and their solutions immediately when they occur and present them to the user
in the model and in separated views. This implementation should make the modeling of
software products as comfortable as the software developers are used to from IDEs.

The first part of the evaluation covers the answering of research question 1, if the
proposed approach is generic applicable on a broad scope of applications. This evaluation
is done informally based on ongoing projects that use this technology or at least parts
of it. The projects use meta models and constraint languages different from UML and
OCL.

In the second part of the evaluation research question 2 will be answered. It will
be shown that the proposed approach is working correct, i. e., if all inconsistencies are
detected correctly (no inconsistency will be overseen or no inconsistency will be detected
that is no inconsistency) and if the generated repairs are correct (they are able to resolve
the inconsistency). The evaluation is done using our prototype implementation and
comparing our reasoner to the built-in OCL environment of the Modeling Development
Tools (MDT) for Eclipse. This will be empirical evaluated on a set of small (approx.
100 model elements) to medium sized (approx. 67.000 model element) UML models and
a set of 20 UML well formedness rules (for the UML meta model) expressed in OCL.
UML well formedness rules are used because they can be applied on all UML models
used for the evaluation. Furthermore, a semi formal discussion about the reasoning and
repair generation algorithm to guarantee that the proposed results are correct.

The third part of the evaluation will answer research question 3 and will show that
this approach is scalable regarding the model size, i. e., the response time is short enough
to not disturb the user in his interactive work [72] and the memory consumption allows
the work with larger models. As the detection of inconsistencies and the generation of
repairs to resolve the inconsistencies is done immediately after a user changed the model,
the calculations and visualizations must be done in less than 0.1s [72]. As this highly
depends on the used tool and underlying hardware, this will be a snapshot of the actual
state-of-the-art. This will be done by an empirical evaluation on our set of UML models
and UML well formedness rules.

At the end of the evaluations, the limitations encountered during the development
process of this thesis and the evaluations are discussed.

8



1.6 Intermediate Goals

1.6 Intermediate Goals

To achieve the final goal five intermediate goals must be reached. The first four inter-
mediate goals have to be reached sequentially, i. e., a preceding goal is the fundamental
of the succeeding one. The fifth is realized in parallel to the other four goals to achieve
the answer of the research questions, to ensure the practical realization of the proposed
approach. In an early stage of this thesis in [88] a first overview about this work was
given and this initial overview has been refined for this thesis.

1.6.1 Building an Overview of Existing Work

Before starting developing a completely new approach it must be evaluated what is
the actual stat-of-the-art in this domain and where are the limitations of the existing
work. Based on the existing work an appropriate point to start must be found, i. e.,
it must be evaluated if some or a combination of the existing work is able to act as
a fundamental for this vision and what partial problems are resolved and which are
unresolved. This exhaustive study of literature can be found in the illustration and
background in Chapter 2 as well as in the related work in Chapter 3.

1.6.2 Approach to Detect Inconsistencies

The second goal is to find an appropriate approach to detect inconsistencies and that is
able to define user defined constraints. The approach must be incremental (the detection
of inconsistencies must be done immediately when the occur) and scale on large models.
The used constraint language must be commonly used and well documented. The writ-
ing of constraints must be intuitive as the system design process itself. The realization of
this goal can be found in Section 5.2 and Section 5.3, where an existing incremental ap-
proach to detect inconsistencies [39] is generalized to be applicable to different modeling
languages [108] and able to process custom user defined constraints [51].

1.6.3 Generating Solutions to Repair the Detected Inconsistencies

The third step is to generate solutions to repair the detected inconsistencies. In this
phase repair actions are generated that repair single inconsistencies in the model. The
repair actions consist of the action that must be taken (add, remove, or modify) and
the model element as well as the property that is affected by this action [90]. How the
repair actions are generated can be found in Section 5.4 and Section 5.5.

1.6.4 Preparation of the Repair Actions to Resolve the Inconsis-
tencies

For the repair actions to be directly executable in the model, concrete values for the
model element property to change must be known. If both, the model element property
and the value that must be assigned to it, is know, the repair action becomes concrete.

9



1. INTRODUCTION

Furthermore, the repair actions for the single inconsistencies must be combined to gen-
erate a complete repair for an inconsistent model. In this goal a fundamental point must
be considered, that the repair actions in the repair must not contradict each other. How
this goal is realized can be found in Section 5.5.

1.6.5 Realization in a Software Tool

To show the feasibility of the proposed approach and to evaluate it, it is necessary
to realize the approach in a software tool that is used in the software development
process [89]. While the first four goals are realized sequentially and build on one another,
the implementation of the proposed approach is done in parallel to the first four goals.
Therefore, the approach is implemented in parallel because of to verify the feasibility of
the approach. The realization of the tool implementation as plug-in for the IBM Rational
Software Architect (RSA) is shown in Chapter 6. As mentioned, the tool implementation
is used to evaluate the usability based on quantitative [92] and qualitative criteria [90, 91],
introduced in Section 1.5, is shown in Chapter 7.

1.7 Structure of the Thesis

In Chapter 2 the basic terms used in the thesis are defined as well as an example to
illustrate the addressed problem. The existing work and work that is related to this work
is presented in Chapter 3. Chapter 4 shows the basic principles used in the proposed
approach shown in Chapter 5. In Chapter 6 a prototype implementation of the approach
is shown that is used for the evaluations shown in Chapter 7. In Chapter 7 a discussion
about the limitations of the proposed approach is also given. Chapter 8 concludes the
thesis and gives an outlook about actual ongoing work that uses the technology presented
in this work.

1.8 Summary

In this chapter an overview about the starting point, motivation and the main vision of
this thesis was shown. Furthermore, the main research questions were presented and the
plan of how these questions will be answered.

10



Chapter 2

Illustration, Background and
Definitions

“Problems are not stop signs, they are guidelines.”
Robert H. Schuller, American Clergyman, 1926

To be more concrete what this thesis is about the basic terms and the main problems
we are tackling are introduced in this chapter based on a running example that guides
us through the thesis. The introduced example consists of different views on an UML
model and is used to demonstrate how arbitrary constraints can be validated on this
model to detect inconsistencies and to resolve them.

2.1 Introductory Example

Most approaches that are comparable to the one presented in this thesis are made for
the model based software development [29, 39, 73, 95, 104, 110]. The example we use is
an UML [85] model containing a class diagram (Figure 2.1), state machine diagram for
one class (Figure 2.2), and a sequence diagram (Figure 2.3). In this example we show
three different views on one model. Moreover, it will be shown how UML and OCL can
be generalized to a more general and abstract form of representation. The diagrams
of the model are free of inconsistencies regarding UML but later, when we introduce
constraints (Section 2.3), inconsistencies will be introduced too.

2.1.1 Notation used in this Thesis

Before we introduce a concrete example, the notation used in this thesis is introduced.

The Typewriter font is used for elements and properties of a system as well as for
code that is used in the text (in separate listings normal roman font with syntax
highlighting is used), e. g., the element Display has the operation stop.

The Slanted font is used for element type description, e. g., the element Display is of
the UML type Class.

11



2. ILLUSTRATION, BACKGROUND AND DEFINITIONS

User
Display

visible

stop()
play/pause()

VideoServer

connect()
stream()
pause()

1

1

*

1

Window

sizeX
sizeY
visible

VisibleDevice

visible

draw()

Controller

select()

Streamer

stream()

Figure 2.1: UML Class Diagram of a Video on Demand System

Values of properties are written in ‘single quotes‘, e. g., the name property value of the
Display is ‘Display‘.

Roman letters (M , e, p,. . . ) are used for elements that refer to the element. Uppercase
letters are for sets and lower case letters are for single value elements.

Greek letters (α, γ, σ,. . . ) are used for elements that refer to constraints.

Tuples are written in angle brackets, e. g., 〈t, γ〉.

Set of values are written in curly brackets, e. g., M = {a, b, c}.

2.1.2 Structural Diagrams

Structural diagrams describe the architecture of a software model. In Figure 2.1 a typical
class diagram is shown that is used as the running example. The basic meta model is
the UML [81] from which Classes containing Attributes and Operations are used. The
example shows an simplified excerpt of a video on demand system. The model consists
of a class that uses the system (User), a class that allows to control the system and the
showing of the video (Display, Window, Controller, and VisibleDevice), and finally
a Class that provides the video data (VideoServer, Streamer).

The User class is an abstraction of the operator of this system. It is representative
for any operator, whatever if the operator is human or another system. It does not
contain any Attributes or Operations.

The Display class contains both, a controller and visualization function. This Class

contains an Attribute visible that indicates, if the Display is visible to the user. The

12



2.1 Introductory Example

Display also contains Operations to control a video (stop and play/pause). Hence, this
class extends the Controller class and the Window class. The Controller class provides
an Operation to select something (this class is an abstract specification of a controller
that does not exactly specifies what it controls). The Window provides Attributes for
the size of the window (sizeX and sizeY) as well an Attribute that indicates if the
window is visible. The VisibleDevice class is a super class for all classes that are
able to represent some content to a user, such as the Window and Display classes. It
also provides an Attribute visible that indicates if the content is visible. Please note
that UML allows multiple inheritance, the redefinition of Attributes and the overwriting
of Operations. A possible restriction can come from the used implementation language
which is not known. The only restriction that can be made are using constraints (will
be discussed in Section 2.3).

The VideoServer class provides and streams the video data. It contains the Op-

erations connect to connect to the video server, stream to stream the video data to
a Display, and pause to pause the video stream. The stream operation is overridden
from the super class Streamer which provides the main streaming capabilities.

A User is connected to one (1) Display and a Display can be controlled and watched
by one (1) User. A Display is connected to one (1) VideoServer but a VideoServer

can provide the data to any number of Displays (*).
Each element of the diagram is of a specific type from the UML meta model. For

example, the Class Display is of the UML type Class. Furthermore, the elements
do have properties that are specified in the meta model. A UML class, for example,
has the property name, i. e., the name property of the UML class Display is ‘Display‘.
Additional, the values of properties can be instances of meta model elements, i. e., the
properties have the type of an UML meta model element. For example, an Attribute of
a Class is a property of the UML class and is of the UML type Attribute which itself has
properties, like a name (e. g., ‘visible‘). The abstraction to elements and their properties
is valid for all elements from the UML meta model.

2.1.3 Behavior Diagrams

Aside the static view of structural diagrams, behavior diagrams are used to describe the
dynamic aspects of a software system. To illustrate that the diagrams are interrelated
in Figure 2.2 a state machine diagram for the Class VideoServer in active state is
shown. The initial state after a display connects to a streamer is stopped. The state
of this class changes form stopped to playing with the Transition stream and changes
back with the Transition wait.

Additional to a state machine diagram, Figure 2.3 shows a sequence diagram. This
sequence diagram shows how a video will be selected and started. First, the User has
to select a video on the VideoServer. When the User selects a video, the Display

connects to the VideoServer and the VideoServer changes into the state stopped.
After that, the User can start the video by sending the play message to the Display.
The Display itself sends the stream message to the VideoServer. The VideoServer

changes its state from stopped to playing and starts streaming (stream) the video data

13



2. ILLUSTRATION, BACKGROUND AND DEFINITIONS

active

stopped playing

stream

waitconnect

Figure 2.2: State Machine Diagram for the Class ‘VideoServer‘

u:User d:Display s:VideoServer

select

connect

play

stream

draw

pause

wait

Figure 2.3: UML Sequence Diagram for Selecting and Starting a Video

to the Display. The video stream can be paused by sending a pause message to the
Display that themselves sends a pause message to the VideoServer which changes its
state from playing to stopped.

The shown diagrams are a small excerpt of the capabilities of the UML but these
diagrams are commonly used and are able to represent static and dynamic aspects of a
software system. Later we will see how these and all the other diagram types can be
abstracted to only a few characteristic elements and properties.

2.2 Domain Language Abstraction

The Meta Object Facility [79] (MOF) introduced by the Object Management Group
(OMG) describes the different abstraction levels for the model-driven engineering. In
Figure 2.4 the different levels are shown, beginning at the most abstract level M3 and
ending at the concrete software product (the source code) at level M0. In our example
we used UML as a modeling language. The UML model is located at level M1 and the

14



2.2 Domain Language Abstraction

M0

M1

M2

M3

Model realization, e. g., Source code

Model, e. g., UML model

Meta Model (DL), e. g., UML

Elements (e) and properties (p)

Figure 2.4: Meta Object Facility Levels [79]

UML meta model at level M2. UML in its standard has UML as its meta model. The
level M3 is the level where the used design language can be abstracted to become general
applicable, i. e., to be used for other model languages than the UML.

UML is a general purpose language that provides a lot of semantics in each of its
diagram types. However, for the definition of a meta model for our consistency manage-
ment these semantics can be ignored as they can be expressed as constraints described
in Section 2.3. In the following we define the main artifacts of how a meta model must
be build up.

Definition 1. A Model (M) consists of elements (e), where the elements can have
properties (p). The property types can be any simple types like Boolean, Integer, Float,
String,. . . or elements themselves. The elements of a model are instances (⋔) of a specific
type (t) defined by the design language (DL).

M :=
⋃

e

t ∈ DL

e ⋔ t

e.p → M ∪ ‘any value‘ ⋔ t

15



2. ILLUSTRATION, BACKGROUND AND DEFINITIONS

2.3 Constraints

In the last sections it was described of what parts a model consists of but it was ignored
how semantic can be expressed in such models. Constraints can be used to define
semantics in a model and its diagrams as well as to restrict model constructs (like the
redefinition of Attributes in a class diagram). The constraints can come from the used
model language (e. g., UML), the used implementation languages (e. g., Java does not
allow multiple inheritance whereas it is allowed in C) or the stakeholder requirements
(the basic functionality of the software, e. g., how a video stream can be controlled by
the customer). While model language dependent constraints are well structured and are
easy to formalize, the stakeholder requirements are often expressed in natural language.
These requirements must be formalized in some way and in the field of requirements
engineering [19] approaches exists that are able to do so. However, this formalization
comes with the problem that this process is error prone and that there might exist
contradictions in the formalized set of constraints which must be detected too. Another
important issue that we have to deal with in this thesis.

In our example we use the Object Constraint Language (OCL) [80], a well formalized
constraint language that is based on first-order logic [8]. For illustration purposes we
use constraints describing UML well-formedness (i. e., UML allows the violation but
for better understanding of a model these constraints should be met) because they are
applicable on all UML models. Constraint 1 shows a constraint defined in OCL that
validates if a Message in a sequence diagram is defined as an Operation in the receiving
Class from the class diagram. This represents a typical constraint provided by the UML
meta model.

Constraint 1 A Message must be defined as an Operation in the receiving Class

1 context Message :
2 s e l f . r e ce iv eEv ent . covered−> forAll ( l : L i f e l i n e |
3 l . r e p r e s e n t s . type . ownedOperation−>exists ( o : Operation |
4 s e l f . name=o . name) )

Line 1 defines the context of the constraint. The context is the UML type Message,
i. e., this constraint must hold for all elements in the model of this type — the context
element is an element of the used meta model, e. g., the UML. Line 2 to Line 4 specify
the condition that must hold for the context element. The details of how a condition is
build up is described in Section 2.4.

Definition 2. A constraint (C) specifies a property and condition that must hold in
the model. It consists of the context (t) and a condition (γ). The condition validates
to a Boolean (B) value where ‘false‘ indicates a violation (inconsistency).

C := 〈t, γ〉

γ : e 7→ B|e ⋔ t

γ(e) = false ⇒ inconsistent

16



2.3 Constraints

As can be seen, this constraint applies to Messages from a sequence diagram. There-
fore, this constraint must be validated for each Message in a sequence diagram shown in
Figure 2.3. The constraint is violated in Figure 2.3 by the Messages play (γ1(play) 7→
inconsistent), pause (γ1(pause) 7→ inconsistent) and wait (γ1(wait) 7→ inconsistent),
because no corresponding Operations exist in the Class Display and VideoServer, nor
in its super classes Controller, Window, VisibleDevice or Streamer.

The last constraint shows that a constraint validation can cover more than one type of
diagram in the model. The next constraint applies to class diagrams only. Constraint 2
validates if an Attribute of a Class is not defined in a super class. The context of this
constraint is the UML type Class.

Constraint 2 An Attribute must not be defined in a parent Class

5 context Class :
6 l e t attrNames :Bag( String )=s e l f . a t t r i b u t e −>c o l l e c t (p : Property | p . name) in
7 s e l f . a l l P a r e n t s ( )−>forAll ( c : C l a s s i f i e r |
8 c . a t t r i b u t e −>f o r a l l (p : Property |
9 not attrNames−>exists ( s : String |

10 s=p . name) ) )

This constraint is validated for each Class in the class diagram. The one validation
on the Class Display and Window will fail because the Attribute visible is defined in
at least one of their super classes.

Constraint 3 State Transition must be defined as an Operation in the Owner’s Class

11 context Trans i t i on :
12 s e l f . owner . stateMachine<>n u l l implies

13 l e t c l a s s i f i e r : B e h a v i o r e d C l a s s i f i e r =s e l f . owner . stateMachine .
context in

14 c l a s s i f i e r . oclIsTypeOf ( Class ) implies

15 c l a s s i f i e r . ownedOperation−>exists ( o : Operation | o . name=s e l f

. name)

Constraints can have interrelation (i. e., their validation overlap in some parts of the
model). Therefore we introduce Constraint 3 that validates if for a given Transition

in a state machine diagram an Operation exists in the owner’s Class. This constraint
causes an inconsistency also, because no Operation wait exists in the Class Streamer.
As can be seen, this constraint accesses the same Operations as Constraint 1. Thus,
there can be effects on the validations of the constraints if one of the Operations will be
changed. This is important when an inconsistency must be resolved because resolving
one inconsistency will cause new inconsistencies or resolve more than one due to these
overlaps.

17



2. ILLUSTRATION, BACKGROUND AND DEFINITIONS

2.4 Constraint Structure

First order logic is commonly used to formally express constraints for many different
applications. The constraints are expressed in first order logic. Such a constraint itself
is an expression in first order logic that contains then again of zero to any number of sub
expressions, i. e., a constraint is a recursive build up construct of expressions, starting at
a root expression without a parent and ends at leaf expressions without sub expressions.

Definition 3. A constraint condition consist of a set of hierarchical ordered Boolean and
non-Boolean expressions where the Boolean expressions (ǫx) consists of an operation

(o), a set of 0 to ∗ arguments (α), a validation result (σ) and an expected result

(ς). The arguments of a Boolean expression are expressions itself and they are tree based
ordered, i. e., each expression has exactly one parent (ρ) and is in a set of arguments
of an other expression except the root expression (ǫ0). The root expression has ‘true‘
as expected result (‘true‘ is equivalent to consistent). A property call expression (ǫp)
accesses a model element property. Property call expressions do not have arguments and
an expected result. Constant expressions (ǫc) consist of a parent and validation result
only.

ǫx>0∧x 6=p := 〈o, α, ρ, σ ∈ B, ς ∈ B〉

ǫ0 := 〈o, α, σ ∈ B〉

ǫp := 〈p, e, ρ, σ ∈ M ∪ ‘any value‘〉

ǫc := 〈ρ, σ ∈ ‘any value‘〉

∀i > 0∃j ≥ 0 ∧ j 6= p : ǫi ∈ ǫj .α ∧ ǫi.ρ = ǫj

2.4.1 Basic Constraint Elements

Table 2.1 shows the common used operations of OCL. The first column shows the formal
notation for the first order logic operations and in informal description of operations that
are custom to OCL, whereas the second column the OCL notation shows. Column three
and four specify the types of the arguments and the last column the result type of the
operation types. The operation with its arguments build an expression.

The first seven rows of Table 2.1 show the common operations of first order logic with
their arguments. The negation (¬) inverts the result of its argument, i. e., if the arg1

validates to ‘true‘ the expression validates to ‘false‘ and vice versa. The conjunction
(∧) validates to ‘true‘ only if both arguments validate to ‘true‘ and the disjunction
(∨) validates to ‘true‘ if at least one argument validates to ‘true‘. An implication (⇒)
validates to ‘true‘ if the first argument validates to ‘false‘ or both arguments validate to
‘true‘, otherwise the implication validates to ‘false‘. An equality relation (=) compares
two arguments and validates to ‘true‘ only if both sides are equal. The quantifiers first
argument is a collection of elements of any type, i. e., the source of the expression.
The second argument is a condition that is validated using one or a combination of
elements from the source. An universal quantifier (∀) validates to ‘true‘ only if the
second argument holds (i. e., the second argument validates to ‘true‘) for all elements

18



2.4 Constraint Structure

operation type OCL
argument types

result type
arg1 arg2

¬arg1 not arg1 Boolean - Boolean
arg1 ∧ arg2 arg1 and arg2 Boolean Boolean Boolean
arg1 ∨ arg2 arg1 or arg2 Boolean Boolean Boolean
arg1 ⇒ arg2 arg1 implies arg2 Boolean Boolean Boolean
arg1 = arg2 arg1 = arg2 any any Boolean

∀a ∈ arg1 : arg2 arg1->forAll(a : arg2) Collection Boolean Boolean
∃a ∈ arg1 : arg2 arg1->exists(a : arg2) Collection Boolean Boolean

constant - - any
property call arg1.arg2 element property any

collect arg1->collect(a : arg2) collection property collection
select arg1->select(a : arg2) collection Boolean collection

variable let arg1 in arg2 any any any

Table 2.1: Commonly used Operation provided by OCL

from the source whereas the existential quantifier (∃) validates to ‘true‘ if at least one
validation of the second argument holds.

The constant operation allows the use of constants in constraints. A constant is,
for example, the value ‘true‘ or ‘false‘. A constant can be of any type, Boolean, Float,
Integer, String,. . . . The property call expression allows the access to properties of el-
ements. To access the name property of an Operation (e. g., Constraint 1, Line 4) the
first argument is the element (Operation o) and the second the property (name) that is
accessed. The result of the expression’s validation can be of any type.

The collect and select expressions are taken over from the OCL. The collect expression
is a property call (arg2) on a set of elements (the source arg1), i. e., it collects the values
of a property from a set of elements and the result is a set of the same cardinality as the
set of elements of the source: |Source| = |Result|. In contrast, the select expression is
a filter expression where the result contains only these elements from the source (arg1)
where the condition specified in arg2 holds. Hence, the result set is a subset of the source
set: Source ⊇ Result.

The last expression, the variable, is also inspired by the OCL. In OCL the let

expression has as its first argument (arg1) the declaration of a variable that can be used
in the expression defined in the in clause (arg2).

2.4.2 Concrete Constraint Validation

Constraint 1 starts with a property call expression (Line 2). The first called property
is receiveEvent on the context element instance (a Message). The context element is
represented in the variable self. For illustration we use a concrete validation of this con-
straint on the Message play, hence, the variable self is instantiated with the Message

19



2. ILLUSTRATION, BACKGROUND AND DEFINITIONS

play. The receiveEvent property is an UML element of type MessageOccurenceSpec-

ification (it is an unnamed element). On the returned MessageOccurenceSpecification

the property covered is called which returns the Lifelines the Message points to. In our
case only one Lifeline is in the set of returned Lifelines — the Lifeline d.

Next, over the returned Lifelines will be iterated. This is done with an universal
quantifier (...->forAll(l:Lifeline|...). The source (the element to iterate over)
is the just now mentioned property call. In the universal quantifier the condition is
defined that must hold for the source elements (Line 3). The condition itself starts with
a property call expression. First, the property represents is called on a Lifeline of the
source set, represented as variable l. The property type called on the returned element
from the represents property call on Lifeline l returns the corresponding class of the
Lifeline — the Class Display. On this Class the property ownedOperation is called
which returns a set of all containing Operations of this Class.

These Operations are the source for the existential quantifier. An existential quan-
tifier is equally build up like the universal quantifier. The condition of the existential
quantifier is an equals relation (Line 4). This relation compares the name of the con-
text element (self.name) with the name of an Operation (o.name) from the source of
the existential quantifier. As the Class Display does not contain an Operation named
‘play‘, the existential quantifier validates to ‘false‘, therefore the validation of the uni-
versal quantifier validates to ‘false‘ also, and hence the validation of this constraint fails
→ an inconsistency has been detected.

Constraint 2 shows some special expression of OCL. In Line 6 of Constraint 2 a
variable is declared that holds all the names of the context element attributes. The
collect operation from OCL is applied on a set of elements where the specified property
is called on each element and the result of this Operation is a set of values from the
property calls. In this constraint the names of the class’ attributes are collected. The
allParents (Line 7) property is a recursive call of the UML properties generalization

and general of the context class and all its super classes. The result of this property
call is a set containing all super classes. Line 8 to Line 10 contain constructs similar to
the one used in the first constraint, only the properties may differ.

2.5 Incremental Consistency Checking

Up to now we are able to detect inconsistencies, but to detect them each constraint
must be validated, i. e., if something will be modified in the model, all constraints must
be re-validated. Validating the consistency in this way is a time consuming process,
especially applied to large models. However, this is not practicable for interactive usage,
hence we have to reduce the effort for re-validation. Egyed presented in his work [39]
an incremental approach for consistency checking — the ModelAnalyzer approach.
This approach collects, while validating the constraint, all the accessed model element
properties. A constraint will be re-validated only if the model change affects one of the
collected model element properties. The collected model elements are the scope of a
constraint validation.

20



2.5 Incremental Consistency Checking

Definition 4. The Scope (S) of a constraint validation is the set of all element proper-
ties (e.p) of the constraint validation. One element of the scope is called Scope Element.
These elements are directly derived from the constraint validation.

∀e.p ∈ S|e.p is accessed during the constraint validation

Definition 4 does not imply that the scope is minimal, i. e., it is not guaranteed that
all element properties have an effect on the validation result of the constraint. However,
it guarantees that all element properties are in the scope that do have an effect on the
validation result, i. e., it is complete. This property is valid even if short circuit validation
is used. Later we will see that this is not necessarily true for the detection of all scope
elements that cause an inconsistency.

Theorem 1. A constraint that has been validated on a context element ec|C := 〈ec, γ〉
must be re-validated only, if at least one element property that has been accessed during
the initial validation e.p ∈ S(γ(ec)) has been changed.

γ(ec) 6= γ(ec)
′ ⇒ ∃e.p ∈ S(γ(ec))|(e.p = r → e.p = r′ ∧ r 6= r′)

Proof. To prove Theorem 1 we use proof by contradiction. We assume that their exists
an element property that is not in the scope of the constraint validation and a change
of this element property affects the constraint validation.

∃e.p /∈ S(γ(ec))|(e.p = r → e.p = r′ ∧ r 6= r′ ∧ γ(ec) 6= γ(ec)
′)

If such an element property exists, it must have had an influence on the initial validation
of the constraint and as such due to Definition 4 it must be included in the scope of
the constraint validation which is in contradiction to our assumption, hence Theorem 1
must be correct.

Constraint 1, for example, accesses the properties receiveEvent and name from the
Message to which the constraint is applied. Additional the property covered of the
element returned by the receiveEvent (an element of UML type MessageOccurence-

Specification) property is called, the represents property of the Lifeline returned by
the covered property, the type of the Lifeline (UML type Class), the ownedOperation

property of the Lifelines’ type, and finally the name property of the Class’ operations.
The quantifier iterate over all elements from the source (the value of a model element
property), e. g., Lifeline(‘d‘).represents is one element of the set from MessageOc-

curenceSpecification().covered.
When we consider the validation of this constraint on the Message play, the scope

of this validation is:

1. Message(‘play‘).receiveEvent → MessageOccurenceSpecification with no name

2. MessageOccurenceSpecification().covered → {‘d‘} set of Lifelines

3. Lifeline(‘d‘).represents → Property(‘d‘)

21



2. ILLUSTRATION, BACKGROUND AND DEFINITIONS

4. Property(‘d‘).type → Class(‘Display‘)

5. Class(‘Display‘).ownedOperation → {‘play/pause‘, ‘stop‘, ‘select‘, ‘draw‘} set of
Operations

6. Message(‘play‘).name → String(‘play‘)

7. Operation(‘play/pause‘).name → String(‘play/pause‘)

8. Operation(‘stop‘).name → String(‘stop‘)

9. Operation(‘select‘).name → String(‘select‘)

10. Operation(‘draw‘).name → String(‘draw‘)

In total ten model element properties were accessed during the constraint validation, i. e.,
only these properties contributed to the validation result of this constraint. The name of
the Message play will be accessed more than once, i. e., each time it is compared to one
of the Operations name. The sequence of how the Operations were accessed is non de-
terministic, because an unordered set of Operations is returned by the ownedOperation

property call. This constraint is re-validated only, if one of these properties is changed.
If, for example, the name of the Message ‘play‘ changes, the complete constraint will be
re-validated. But if, for example, the Message ‘select‘ changes, this particular constraints
needs no re-validation.

To achieve a better performance of the re-validation, a challenge of this work is
to reduce the scope of a constraint validation to those elements that really affect the
validation result. If, for instance, in our example the property name of Message play

will be changed to ‘play/pause‘, existing approaches on consistency management would
re-validate the complete constraint.

The expressions represent the atomic structure (in the sense of validation) of a con-
straint. State-of-the-art approaches in incremental consistency management [39, 73] have
to re-validate the entire constraint if a model modification affects it. A key challenge in
this work is to achieve an optimized re-validation of affected constraints. Optimized for
performance (low re-validation time) and low memory usage. Often performance gain is
achieved with an increased memory usage (e. g., RETE algoritm [50]) and in this thesis
the focus is on the re-validation of the atomic structures, the expressions, and simulta-
neously keeping the memory usage as low as possible. In [112] Chang et al. presented
an promising approach for an optimized re-validation algorithm for first order logic for
the consistency management in pervasive systems and in this work a similar approach
will be used.

2.6 Understanding an Inconsistency — What Caused an

Inconsistency

Up to now the work is very similar to the work by Egyed [39] which is the basis for this
thesis. The scope built by this approach is not minimal in the sense that it contains

22



2.6 Understanding an Inconsistency — What Caused an Inconsistency

scope elements that are not immediately contributing to an inconsistency, i. e., the values
of the scope elements can be changed to any other value and the validation result of the
constraint would not change. However, while some scope elements do not contribute to
an inconsistency, some scope element might be missing, if, for example, the validation
stops at the first occurrence of an constraint validation (e. g., short circuit validation in
C [49], Java, . . . ).

As short circuit validation can improve the performance of a validation and pre-
vents the validation from errors (e. g., programming language Java: if (x != null &&

x.name = ‘foo‘) {...}), in the context of consistency checking some scope elements
can not be detected due to short circuit validation. To illustrate this issue, we take the
constraint expressed in Constraint 2. At first we will list all the scope elements accessed
during a complete validation of the constraint on the Class ‘Display‘. The scope elements
are in the sequence when they are first accessed:

1. Class(‘Display‘).attribute → {‘visible‘} set of Properties

2. Property(‘Display.visible‘).name → String(‘visible‘)

3. Class(‘Display‘).generalization → Generalization with no name

4. Generalization().general → Classifier(‘Window‘)

5. Classifier(‘Window‘).generalization → Generalization with no name

6. Generalization().general → Classifier(‘VisibleDevice‘)

7. Classifier(‘VisisbleDevice‘).generalization → {} empty set

8. Classifier(‘Window‘).attribute → {‘sizeX‘, ‘sizeY ‘, ‘visible‘} set of Properties

9. Property(‘Window.sizeX‘).name → String(‘sizeX‘)

10. Property(‘Window.sizeY‘).name → String(‘sizeY‘)

11. Property(‘Window.visible‘).name → String(‘visible‘)

12. Classifier(‘VisibleDevice‘).atrribute → {‘visible‘} set of Properties

13. Property(‘VisibleDevice.visisble‘).name → String(‘visible‘)

In total twelve scope elements are accessed during a complete validation. Using short
circuit validation, i. e., the validation stops when the first violation of the constraint is
detected, the validation stops at the scope element Property(‘Window.visible‘).name

(Item 11), i. e., the last two scope elements will not be accessed and the second violation
(the visible property of the VisibleDevice class violates the constraint too) will also
not be detected. However, some of the scope elements in the list do not have an in-
fluence on the inconsistency. Scope element Classifier(‘VisibleDevice‘).generalization

(Item 7), Property(‘Window.sizeX‘).name (Item 9) and Property(‘Window.sizeY‘).name

23



2. ILLUSTRATION, BACKGROUND AND DEFINITIONS

(Item 10) do not violate the constraint, but these scope elements are accessed during the
validation, even though short circuit validation is used. Moreover, some of the elements
that violate the constraint too, might not be detected with short circuit validation.
Hence, the cause of an inconsistency is a subset of the scope plus some elements that
might not be detected due to an earlier detection of an element that already violated
the validation [91].

Definition 5. The Cause (ζ) of an inconsistency is the part of the constraint validation
that immediately caused the inconsistency. The cause consist of a cause of expressions

(ζǫ(γ)) and of a cause of scope elements (ζe.p(γ)).

ζǫ(γ) :=
⋃

ǫx ∈ γ|ǫx.σ 6= ǫx.ς

ζe.p(γ) :=
⋃

ǫp.e.p ∈ γ|ǫp.ρ.σ 6= ǫp.ρ.ς

The filtering of the elements that immediately caused an inconsistency is an impor-
tant pre-requisite for generating repairs, because it filters all those scope elements that
need no modification to resolve an inconsistency. The ModelAnalyzer approach is
able to generate repairs based on the scope of the constraint validation [40, 89] only.
However, this approach is conservative in that sense that it considers each scope element
as the potential faulty one and as such repairs are generated that would modify a model
element property that need no change. After generation, these unnecessary repairs can
be only removed through time consuming testing.

2.7 Repairing an Inconsistency

While it is important to allow and tolerate inconsistencies [7] during the software devel-
opment process, they must be repaired eventually. However, to repair an inconsistency
two things are important to know: First, what needs repairing, i. e., the location, and
second, how it can be repaired, i. e., how the value of the location must be changed to
resolve an inconsistency. Nentwich et al. [74] introduced abstract and concrete repairs,
where abstract repairs represent the locations where to repair and concrete repairs are
the locations and how to change the value to resolve an inconsistency. Additional to
how to repair an inconsistency it should be known what are the effects (side effects) of
a repair action on the model besides the resolution of the addressed inconsistency.

2.7.1 Repairs

A pre-requisite for abstract repairs is to detect the element properties (scope elements)
that caused the inconsistency which is described in [88] and in the last section. However,
how the elements must be changed to resolve an inconsistency is not specified by the
cause. Furthermore, to resolve an inconsistency it could be possible that all elements in
the cause must be modified, certain combinations of elements, or it could be enough to
change one element of the cause. The only thing we know from the cause is, that a change
of a certain combination of elements of the cause is able to resolve the inconsistency.

24



2.7 Repairing an Inconsistency

From the cause we get the scope element(s) that have to be changed somehow to
resolve an inconsistency, but information how to change them is still missing. If no
appropriate value can be determined, we denote a repair action as abstract. A concrete
value transforms an abstract repair action into a concrete repair action. A special case
of a concrete repair action is a conditional concrete repair action. This type of repair
action gives a hint for a concrete value, for example, if it is known that a model element
property must not have a particular value, or if the value of a model element property
must be larger than a specific value. For an abstract and a conditional concrete repair
action the input from the designer is needed. In this thesis, if not defined otherwise, we
talk about concrete repair actions.

Definition 6. A repair action (r) is a change in the model that resolves an incon-
sistency by itself, or in combination with other repair actions. It consists of a change

type (tr), a scope element (e.p), and a value (v) that must be applied to the scope
element. The type of a change can be add which adds an element to the scope element,
delete which deletes en element from the scope element, or modify which changes a
scope element to a specific value. An abstract repair action (r) is an action where
no concrete value can be calculated (?). The value for a conditional concrete repair
action is attached with a condition that specifies a range (e. g., v > ‘x‘ or v 6= ‘x‘).

r := 〈tr, e.p, v〉|v 6=?

r := 〈tr, e.p, v〉|v =?

tr ∈ {add(+), delete(−), modify(×)}

e.p ∈ ζe.p(γ)

Considering our example class- and sequence diagram from Figures 2.1 and 2.3, the
inconsistency from the validation of the constraint condition γ1(play) can be repaired
by renaming the Message play, by the removal of this Message, by the renaming of one
of the existing Operations of the VideoServer or the Streamer, or by the addition of a
new Operation to one of these Classes.

As mentioned before, a single repair action can be sufficient to resolve an inconsis-
tency. However, some inconsistencies do have alternatives (•) to resolve them and the
alternatives may be composed of several repair actions (+) (i. e., more that one scope
element must be modified) to resolve the inconsistency. A single alternative of actions
needed to resolve an inconsistency is a repair (R).

Definition 7. A repair (R) is a combination of repair actions that must be executed
on the model to resolve an inconsistency. A repair that contains at least one abstract
repair action is an abstract repair R.

R(γi) := +r|γi → γc

R → R ⇔ ∃r ∈ R|r → r

γi . . . violated (inconsistent) constraint condition

γc . . . satisfied (consistent) constraint condition

25



2. ILLUSTRATION, BACKGROUND AND DEFINITIONS

A repair must be complete in the sense that all actions which are needed to resolve
an inconsistency are included and it must be minimal in the sense that no action is
included in the repair which does not contribute to the resolution of an inconsistency.
In Chapter 7 we will proof that the proposed approach fulfills these properties.

To repair the inconsistency of γ1(play) we decide to rename the Operation select

of the Class Controller to play:

r1 := 〈×, Operation(‘select‘).name, ‘play‘〉

R(γ1(play)) := {r1}

The fact that this modification might cause other inconsistencies will be discussed in the
following section.

2.7.2 Side Effects

Repair actions change element properties in a model and, hence, repair actions can
have other effects than the resolution of one inconsistency. This effects can be positive,
if another inconsistency than the one to repair becomes consistent, or negative, if a
consistent constraint validation becomes inconsistent.

Definition 8. The influence of a repair action onto other constraint validations than
the one to repair is a side effect (S). It belongs to a single repair action and consists
of validated constraint conditions that are affected by this repair action. A side effect
type (ts) can be positive if the repair action resolves the other constraint validation or
negative if it causes a new inconsistency. If the repair action is an abstract repair
action, the side effect type is set to unknown.

S(r(γi)) := 〈γx, ts〉

ts ∈ {positve(p), negative(n), unknown(u)}

In [76] it was evaluated how common overlapping scope elements are, i. e., how many
scope elements are accessed by at least two different inconsistent constraint validations.
For this thesis this evaluation was extended using 29 UML models on the set of 19
constraints (Appendix A). Figure 2.5 shows that in average 80% of the inconsistent con-
straint validations have at least one scope element in common, hence it can be assumed
that side effects are very likely and must be considered for resolving inconsistencies. In
addition to the effects on other constraint validations, those commonalities can be used
to determine concrete values for repair actions.

A side effect is not necessarily bound to a constraint different to the one that should
be repaired, but it can also affect parts of the constraint that is repaired. If, for example,
a scope element will be modified by a repair action but is accessed more than once during
the constraint validation it might be possible that the modification resolves the violated
part of the constraint but causes an inconsistency in another part of the constraint.
There can be two reasons for that: 1) the constraint contains a contradiction, i. e., two
conditions must be fulfilled by constraint that contradict each other (e. g., a element

26



2.8 Keeping the Performance in Mind

0
10
20
30
40
50
60
70
80
90

100

101 102 103 104 105

# Model Elements

%
O

ve
rl

ap
s

⊕
⊕⊕⊕

⊕ ⊕⊕⊕⊕ ⊕ ⊕⊕ ⊕⊕ ⊕ ⊕⊕ ⊕
⊕

⊕ ⊕⊕ ⊕⊕⊕ ⊕⊕⊕

⊕

Figure 2.5: Overlapping Scope Elements

property must be named ‘x‘ and the same model property must be named ‘y‘), or 2)
the value of the repair action is not the best choice for the repair action. Therefore, the
side effects will be used to detect constraints that cannot be satisfied by any state of the
model and to derive values for repair actions, both, valid (values that can be assigned to
a element property without causing a new inconsistency) and invalid values (values that
must not be assigned to a element property because it will cause a new inconsistency).

We consider the repair for the inconsistency caused by the constraint validation
γ1(play). The repair R(γ1(play)) affects the scope element Operation(‘select‘).name

which will be accessed by the constraint validation γ1(select) 7→ consistent also which
is actually not violated. But if R(γ1(play)) will be applied, the validation of γ1(select)
will fail because the Operation select does not exists anymore in the Class Display

nor in its super Class Controller, thus we encounter the side effect:

S1(r1) := 〈γ1(select), n〉

2.8 Keeping the Performance in Mind

Performance is import in this work because the proposed solution works interactive, i. e.,
new information about the consistency of the model will be generated immediately after
a change to the model. To achieve this our work is based on an incremental approach
that needs a one-time validation of the complete model and set of constraints but new
validations are done on changes to the model, i. e., the amount of re-validation is limited
to the set of constraints that are affected by a change [92].

The gain of performance often comes with an increased usage of memory as it is
the case with reasoning algorithms that are based on the RETE algorithm [50]. These
algorithms keep the complete data structures in memory and based on pattern matching
the re-validation of the affected parts of a validation is triggered. However, keeping the

27



2. ILLUSTRATION, BACKGROUND AND DEFINITIONS

complete data structures comes with the limitation of the system size and the number
of constraints.

SAT based reasoning provides all the functionality needed for the proposed solu-
tion, but it comes with the need of encoding the system as well as the constraints into
CNF (Conjunctive Normal Form). Recent approaches use SAT based reasoning for that
purpose, all struggle with this encoding into CNF, which is time consuming and rarely
incremental in contrast to the reasoning process .

2.9 Summary

In this section we introduced a simple example of an UML model containing a class
diagram and a sequence diagram as well as a state machine diagram for a class. It
was shown how the consistency of the model can be validated based on two example
constraint expressed in OCL. Furthermore, it was defined how the cause of an inconsis-
tency can be determined, how the inconsistencies can be repaired and what are the key
challenges that this work has to deal with.

28



Chapter 3

Related Work

“Seek not to follow in the footsteps of men of old; seek what they sought.”
Matsuo Basho, Japanese Poet, 1644-1694

In this chapter we give an overview about the work that exist in the domain of con-
sistency checking and the processes that a consistency management framework consists
of. We illustrate in more detail the underlying techniques and the previous and ongoing
research in this domain.

3.1 Consistency Management

Inconsistencies are differences between the specification of a system and its realiza-
tion. This thesis focuses mainly only managing consistency in software models but the
concepts introduced are applicable to a broader spectrum than model-based software
development.

Spanoudakis and Zisman [101] give an overview about the domain of consistency
management. They define an inconsistency as a consistency rule that is is not satis-
fied by software models and differentiate five kind of consistency rules: well-formedness
rules, description rules, application domain rules, development compatibility rules and
development process compliance rules. Furthermore, they describe a process for man-
aging inconsistencies. The main activities in this process are the detection of overlaps
in the software models, the detection of inconsistencies based on a set of consistency
rules, the diagnosis of inconsistencies, handling of inconsistencies, the tracking of incon-
sistencies and the specification and application of an consistency management policy.
The diagnosis of an inconsistency is a major activity, because only if an inconsistency is
thoroughly understood, actions can be defined to resolve an inconsistency and calculate
all the effects on the model that the resolution of an inconsistency has.

Finkelstein et al. [48] defined (in)consistency management as the process to support
the stakeholders goals in the software development process. Nuseibeh et al. [78] identified
that inconsistencies improve the understanding of requirements in a team of developers.
Furthermore, that it is desirable to tolerate inconsistencies, i. e., that there is no need

29



3. RELATED WORK

to resolve them immediately. In this work we detect inconsistencies and calculate the
repairs immediately, but we leave it to the user how to deal with them.

Software models are not only used to understand the costumer needs but also as
basis for the implementation. Lange et al. [62] made an empirical assessment about
the completeness of UML [43] design model and the degree of how the model can be
interpreted and misinterpreted. They observed that with an increase of completeness of
the model the rate of misinterpretation decreases. Later on Nugroho et al. [77] analyzed
the relation between the level of detail in UML models and the defect density in the
source code. This study indicates that the more detailed UML models are, the less
defects are in the source code. From this it follows that an early detection of defects,
errors and inconsistencies is essential for the quality of a software product.

An efficient consistency management is not only required between costumer require-
ments and the software model or between the software model and the source code, but
also during the design process of the model. In the design phase a model language is
used (e. g., UML) that has well-formedness rules that must be enforced. Furthermore, on
larger projects usually more than one person or team is working on different parts of the
project that overlap and different versions of a project must be maintained. This comes
with the problem that the different branches must be merged, which leads to inconsis-
tencies. The AMOR project [5] is a versioning system for software models. Line based
versioning system like SVN [84] or CVS [86] are not useable for managing and merg-
ing different versions of a software model because software models do have graph based
representations and are attached with semantics that conventional versioning systems
cannot deal with. Their approach also provides the support for collaborative work [22].
In contrast, this thesis does not focus on the problem merging different versions of mod-
els but on providing efficient support in resolving inconsistencies fast caused by merge
conflicts.

3.2 Formalizing Requirements

To validate if a model is in a consistent state, a set of rules (specification) must be defined
that the model must conform to, i. e., a consistent model conforms to its specification.
Such a rule is a constraint that must be fulfilled by at least one state of the realized model.
However, the origin of these constraints is varying. First of all, there are constraints from
the used modeling language. In the case of an IDE such constraints are defined for the
programming language, like c [58], c++ [105], java [6], c# [55] and so on. Formalizing
constraints for such a formalized language is much easier than for requirements that
come from the needs of a software model [70].

As it is our goal to evaluate the consistency of well formalized requirements, as well
as requirements that come from semi to non formalized sources, a convenient way must
be found to transform any kind of requirement into a formalized shape. However, this
problem has been recognized decades ago [47] and supporting tools have been developed
to improve the requirements elicitation process. Boehm et al. [18, 19] present an approach
that provides a collaborative technique to negotiate about the requirements of software

30



3.3 Detecting Inconsistencies

systems. The tools improved the requirements elicitation process, but the problem of
formalizing requirements still exist and Boehm et al. presented an hybrid approach to
formalize informal user requirements [60]. Their work is based on experiences of informal
stakeholder requirements from more than 100 projects.

Cimatti et al. [28] formalize requirements into object models and temporal constraints
to validate if the set of requirements is free of contradictions and if they are compatible
with the basic scenarios. Their work is based on Satisfiable Modulo Theory (SMT)
solvers and is implemented in an extended version of the NuSMV [27] model checker.
The formalization of requirements is a pre-requisite, so that the approach developed in
this thesis can show its full potential.

3.3 Detecting Inconsistencies

Traditional approaches on detecting inconsistencies in software models transform the
model into some intermediate representation that is validated against a set of constraints.
Using an intermediate representation has many advantages as there exist well known and
established techniques (e. g., SAT Solver [12, 33]) for reasoning.

Biehl and Loew [11] present an approach that uses transformations between high-
level artifacts (model elements) and low-level artifacts (source code) to validate the
consistency in model-based development. Their approach addresses the domain of aspect
oriented programming and they compare the model with the source code to check for
consistency. The model and the source code are transformed into one graph and fact
extraction is used for the validation. Winkelmann et al. [109], for example, presents an
approach that translates meta models and OCL [80] constraints into graphs so that the
constraints can be checked during the instances generation process.

Malgouryres et al. [68] present and approach that enables the validation of UML
models using Constraint Logic Programming (CLP). CLP has as input facts and rules
representing the model and the constraints. The output of a CLP program are con-
junctions of constraints that satisfy the goal of the CLP program. Hence, if the output
is empty then an inconsistency has been detected. Queralt [87] transform both UML
diagrams (class- and sequence diagrams exclusively) and OCL consistency rules into a
logical representation to verify the consistency of the model. The Checking Query Con-
tainment (CQC) [44] method is used to check the satisfiability of the UML diagrams
and the constraints.

In the domain of Software Product Lines (SPLs) Czarnecki and Pietrozek [29] use
OCL to define well-formedness rules for the verifications of feature-based model tem-
plates which are analyzed by SAT solvers. The ability to translate constraints requires
detailed understanding of the constraint semantics which is very relevant in this work.
Campbell et al. [24] make use of the SPIN model checker to evaluate a range of con-
sistency problems within and across UML diagrams for embedded systems. The UML
diagrams are transformed into formalization rules for Promela, so that it can be used
with SPIN. Their approach checks structural and behavior aspects of the UML diagrams.

31



3. RELATED WORK

Straeten et al. [103, 104] explore the use of description logic to detect inconsistencies
between class, sequence and state machine diagrams. They differentiate inconsistencies
between the different diagram types and inconsistencies that occur during the evolution
of the diagrams. The diagrams and the constraints expressed in OCL are transformed
into a logic and abstract syntax representation to be used with the tools Loom [66] and
RACER [53].

Zisman and Kozlenkov [113] present a goal-driven knowledge base approach to man-
age the consistency of UML models and diagrams. UML specifications, expressed in
XMI (XML Metadata Interchange), are transferred into a knowledge base and with the
help of patterns and axioms consistency rules are expressed. Cheng et al. [26] introduce
VisualSpecs which uses transformations to substitute the imprecision of OMT (a lan-
guage similar to UML) with algebraic specifications. Conflicting specifications are then
interpreted as inconsistencies. ViewPoints [37], an approach developed by Easterbrook
et al., is another classical approach to consistency checking. It addresses the problem of
inconsistencies and relations between different views of a software model and that the
specifications for the model can evolve during the design process. An aspect that this
thesis addresses also by allowing to define arbitrary constraints.

Fortunately, the complete transformation to an intermediate representation is not
a pre-requisite for consistency checking. Indeed, it is possible to write constraints that
directly compare design models rather than transforming them first [45, 52, 73, 95]. For
example, xLinkIt [73] evaluates the consistency of “documents”. They use XML as
representation of the documents and XPath as well as XLink to validate the consistency
and to express the inconsistencies in the documents. Such documents could be anything
including UML design models that are often represented in XMI documents. Constraints
are expressed in a uniform manner and xLinkIt is capable of checking the consistency
of models incrementally. Their approach is type triggered, i. e., a consistency rule is
validated if the type of the changed element matches the type for which the consistency
rule is written for. During the validation process a set of links are generated. The links
can be consistent links, if the consistency rule is not violated or inconsistent links, if the
consistency rule is violated. These links are used for the re-validation of the consistency
rules. Type triggered approaches are able to reduce the re-validation effort compared
to batch-based approaches. However, they are not applicable to large scale models or
documents as the evaluation data shows. It requires between 5 and 24 seconds for
evaluating changes and the tool is thus not able to keep up with an designer’s rate of
model changes.

ArgoUML [94, 95] was probably the first UML design tool to implement incremental
design checking but it required annotated consistency rules. Their annotations were
lightweight but so where their computational benefits. The approach by Reiss [93] is in
principle similar to xLinkIt. Rather than defining consistency rules on XML documents,
Reiss defines consistency rules as SQL queries that are evaluated on a database which
may hold a diverse set of artifacts. Reiss’ use of a database makes his approach certainly
more incremental. However, the incremental updates in his study suggest non-instant
performance (with 30 seconds to 3 minute build times).

32



3.3 Detecting Inconsistencies

Blanc et al. [13] achieve near instant performance thanks to the re-writing of con-
straints for each relevant model change. This requires the designer to re-factor consis-
tency rules to understand the impact of model changes. If done correctly, this leads
to good performance. However, since writing these annotations may cause errors, they
are no longer able to guarantee the correctness of the incremental consistency checking
process.

In [112] Xu et al. present an incremental approach to detect inconsistencies based on
pattern matching. Each rule expressed in first order logic is converted into a consistency
computation tree where the operations like and, or, exists, forall, . . . build internal nodes.
Each of the operations has one or more branches (depends on the operation’s arity)
that are terminated by specific patterns. These patterns are used to trigger the re-
validation of the rules. This is very similar to our approach, but they use this technology
exclusively to improve the performance of the re-validation of consistency rules. We use
this technology to get additional information from violated rules, i. e., what exactly
caused the violation and how to resolve this inconsistency. Furthermore, we calculate
effects that are beyond the resolution of one particular inconsistency and optimize the
scope (pattern) to reduce the re-validation effort and time.

Blanc et al. [13] introduce methodological inconsistencies that constrain the order of
operations that should be taken into account during the validation of the constraints.
A specification for a software product normally consists of a set of rules that must be
satisfied and Easterbrook and Nuseibeh [36] point out that an inconsistent specification
cannot be satisfied. To detect inconsistencies Cabot et al. [23] developed an event trig-
gered approach that is applicable to UML and OCL, and generates a set of actions that
would violate the defined consistency rules. A rule is considered as violated if one of
these action is executed on the model. During the validation, the consistency rule is
modified in a way that the best context for the re-validation is found.

This thesis is based on Egyed’s work on incremental consistency checking [39, 51],
where the defined constraints are treated as black boxes (black box validation). The con-
straints can be defined during run time of the consistency checker, so that the constraints
can be defined for the use of UML and for other domain specific languages [59, 100]. It
does not need any annotations or modifications of existing languages to validate an UML
model against a set of arbitrary constraints. The internal structure of the constraints is
invisible to the user and can be defined in any language. The validation is triggered by
a context element and the re-validation is based on a scope of model elements that are
accessed during the validation of the constraint.

In this thesis we are concentrating on analyzing constraints (i. e., white box valida-
tion) that are expressed in first-order predicate logic. Due to white box validation the
scope as well as the elements that need repairing can be filtered and it can be deter-
mined how they can be repaired more precisely compared to black box validation. Since
decades predicate logic is interpreted as programing language and is used in the field of
artificial intelligence and program analysis and optimization [61, 106]. We ingest some
of these early ideas and include them to achieve an approach that is able to detect the

33



3. RELATED WORK

main cause of an inconsistency based on the structure of a first-order predicate logic
expression.

3.4 Resolving Inconsistencies

Once an inconsistency has been detected it must be resolved eventually. In the spirit
of tolerating inconsistencies [7] the moment when an inconsistency is detected does not
necessarily need to be the same where it should be resolved. Hence, inconsistencies
and their solutions should be tracked and must be kept up-to-date to the actual design
progress until they will be resolved.

Inconsistencies might occur in every document and software models are expressed
as documents. So in the field of document management systems (DMS), Scheffczyk
et al. [98] present an approach that checks the consistency of interrelated documents
that are processed by a team of authors. They use suggestion-Directed Acyclic Graphs
(s-DAGs) [1] as representation of the documents and the constraints. The repairs for
the documents are derived from the s-DAG representation and not from the documents.
To eliminate unnecessary repairs, heuristics are used. As this might be useful in the
field of DMS but this is not useful for model-based software development, because each
software project has different requirements and so no generic heuristics can be derived
that are applicable for all software projects. Furthermore, the generation process of
repairs is independent of the inconsistency detection process and is a multilevel process
that results in increasing time consumption, whereas our approach is able to detect and
generate repairs on demand as soon as the model is changed.

The approach by Almeida et al. [4] considers the model and the last changes made
as input to resolve inconsistencies. They use inconsistency rules and generator functions
that are computed for every change that has been spotted a possible cause and a set
of resolutions for the detected inconsistency. Van Der Straeten et al. [102, 103], use a
knowledge base expressed in description logic as well as the query and rule language
nRQL to generate repairs for inconsistent models. The inconsistencies are detected
by nRQL queries, where the variables of these queries are bound to model elements.
The resolutions are represented as nRQL rules that consist of statements that add or
remove data from the model to resolve the inconsistency. This approach considers all
inconsistencies at one time and generates a set of repair actions that transform the model
from an inconsistent state to a consistent one — if a solution exists. As this approach
must transform the model and the inconsistency rules into description logic, it has no
incremental characteristic, i. e., the operation is similar to batch based approaches which
are very time consuming.

Mens et al. [71] propose an approach that uses graph transformations to detect and
resolve inconsistencies. The transformation rules are composed of a left-hand side that
defines elements that must be absent or present to activate the rule. The right-hand
side specifies how the graph must be transformed. The inconsistencies are resolved by
transforming the graph structure of the conflict nodes that are added to the left-hand
side when an inconsistency is detected.

34



3.4 Resolving Inconsistencies

Briand et al. [21] identifies specific change propagation rules for all types of changes
and computes change actions for UML models that are relevant for our work in generating
repair actions for UML. However, problematic is that there is no guarantee of correctness
or completeness associated with these rules.

Based on the xLinkIt approach by [73], in [74] a repair framework for inconsistent
distributed documents is presented. It uses a static analysis of the constraint structure
to determine the model elements that must be changed and in some cases also the values
how the model elements must be changed. To distinguish between what elements must
be changed and how they must be changed, they introduced the concept of abstract
repair actions (where to change, i, e., the model element) and concrete repair actions
(how to change, i. e., the values that must be applied to the model element). However,
their approach is conservative and may suggest incorrect repair actions because they do
not consider the run time behavior of the constraint’s validation.

Dam [30, 31, 32] analyzed and developed an approach in his thesis how OCL con-
straints can be violated or resolved respectively, based on the internal structure of the
constraints. He also distinguishes five different actions that can be taken in the model to
achieve a violation or resolution. Abstract repair plans are generated at compile time,
i. e., the set of OCL constraints is statically defined in the tool, and these abstract ac-
tions are instantiated if the constraint is violated by the model. The repair plans that
resolve the inconsistency are ranked and provided to the designer who decides which
plan is executed. The repair plans itself can also be modified or executed partially. This
approach is designed exclusively for OCL and a proof is given that this approach is cor-
rect and complete regarding the single OCL operations. Furthermore, this approach, in
contrast to [74], is able to consider all inconsistencies at one time. A major difference to
our approach is that they generate abstract actions in advance, at compile time, where
we do not generate abstract actions in their sense. But our repair actions are generated
based on a completely instantiated consistency rule, i. e., our repair action generation
process starts after an inconsistency has been detected. We navigate the violated con-
structs from top to the model elements at the bottom of the validated constraint to
generate the repairs. The logical constructs of the constraints define the repair actions
that must be taken to resolve an inconsistency. As we know the model elements that
must be changed, we are also able to detect side effects of the repair actions and we are
able to deal with more than one inconsistency.

Xiong et al. [110] presents an approach that combines the detection of errors and
provides actions to repair them on UML models. They use their own language for
the definition of the consistency relations (constraints). This language, called Beanbag,
has an OCL-like syntax and provides a fixing semantic for elements that are changed.
However, when writing consistency relations, the designer also has to specify how this
relation has to be fixed when it is violated — a manual and error prone activity which
may lead to incorrect repair actions also.

Based on the previous approach on consistency checking [82], Egyed et al. [40, 41]
present how to repair inconsistencies in models and how the generated choices are eval-
uated. However, this approach is overly conservative and generates repairs for all model

35



3. RELATED WORK

elements accessed by the validation of a constraint while often only a subset thereof
causes the inconsistency.

As these approach considers the validation of a constraint as black box, i. e., they do
not consider the run-time behavior of a constraint, the quality of the generated repairs
is not optimal, i. e., some repairs are missing or some proposed repairs are no repairs.
Nöhrer et al. introduced HUMUS [75] (High-level Union of Minimal Unsatisfiable Sets)
to detect the cause of SAT [33] (Boolean Satisfiability Problem) problems in the domain
of Product Line Engineering (PLE). The result of SAT solvers normally is SAT (if a
solution exists) or UNSAT (if no solution exists). Their approach is able to generate all
the elements that cause an UNSAT state of a software product line. As the proposed
approach in this thesis does not use SAT solver for reasoning (problem of transforming
the model and the constraints into CNF), the proposed approach has to deal with the
same problem of missing elements (due to, for example, short circuit validation) that
must be repaired to resolve an inconsistency.

In addition to the detection of elements that might be overseen, if the concrete
validation of a constraints is not considered, the run-time information of a constraint
validation can be used to generate concrete repair values for a repair. Malik et al. [69]
present an approach to repair data structures during run time of a program. This
approach combines software testing and debugging with data structure repairs. They
use the data structure repair tool Juzi [42]. Juzi is a tool that tries to repair Java data
structures during run-time, based on the constraints defined in a repOk method. This
method is like a constraint definition in our approach. If the execution of this method
fails, the tool tries to repair the accessed data structures by setting the last accessed field
to (1) null, (2) field that have already been visited during repOk’s validation, and (3)
one node that has not yet been visited [42]. Only these actions are reported as a tuple
in the form of 〈o, f, o′〉 that will repair the data structure, i. e., where the repOk method
succeeds. The concrete actions generated by Juzi are abstracted such that they can be
applied to the running java code. The abstraction prioritizes expressions that start with
a local variable declared by the method [69]. To validate the repaired methods they use
Korat [20], a tool that uses JML [63] and JUnit [9] tests to generate counter examples
from existing test cases and specifications.

Most approaches are able to generate single repair values for the repairs of an in-
consistency but they fail if ranges of values are given in constraints or some values are
excluded because an infinite set of solution then might exists. Xiong et al. [111] present
an approach for software product lines that is able to deal with such constraints that
specify a specific range of allowed values. This topic is also very import for this thesis
because the proposed approach is able to generate concrete repair actions for violations
of such constraint constructs.

36



3.5 Summary

3.5 Summary

In this chapter an overview was given about work that is directly relevant to this work
as well as work that already uses technologies in other domains than the model-based
software development that are very useful for the proposed approach.

37



3. RELATED WORK

38



Chapter 4

Basic Principles

“Any sufficiently advanced technology is indistinguishable from magic.”
Arthur C. Clark, English physicist & science fiction author, 1917

In this chapter the basic principles of the proposed approach are presented. It will
be shown how the constraint management can be generalized to be applicable on an
arbitrary domain language and constraint language. The basic principle of this approach
is the break-down of the constraints into their smallest/atomic units — the expressions.
Each type of expression needs a special treatment to achieve the best performance and
to determine the repairs for detected inconsistencies. Hence, for the basic principles
of the proposed approach we roughly distinguish between Boolean expressions and an
expression to access model element properties. Moreover, the concept of expected and
validated results will be introduced.

4.1 Concept of Expected and Validated Results

In the definition of the expression presented in Section 2.4, we defined for Boolean
expressions an expected result (ς) and validated result (σ). This follows the constraints
that define aspects that are expected to be realized in a model. If the constraints are
satisfied (i. e., the defines aspect is realized in the model), the validation result of the
constraint is the expectation — the expected result. A constraint is always a Boolean
condition where the expected result is ‘true‘. Therefore, a constraint validation indicates
an inconsistency if it validates to ‘false‘ — the expected result differs the validated result.

This principle we take over for all Boolean expression in a constraint. Therefore
we can distinguish which parts of a constraint validation are not violated (the expected
result equals its validated result) and which parts of a constraint validation are violated
(the expected result differs is validated result). From this information we conclude
what needs repairing, if the constraint validation fails (i. e., an inconsistency has been
detected).

39



4. BASIC PRINCIPLES

a b σ(γ) S(γ) ζe.p(γ) R(γ)

1 false false false {a} or {b} {a, b} R(a) + R(b)
2 true false false {b} {b} R(b)
3 false true false {a} {a} R(a)
4 true true true {a, b} ∅ ∅

Table 4.1: Validations of a Conjunction γ := a ∧ b

4.2 Boolean Expressions

As Boolean expressions we define all expression types that have a Boolean result. This
includes conjunctions, disjunctions, negations, universal and existential quantifiers, as
well as the equality relations.

4.2.1 Conjunctions

For the illustration we use a simple conjunction as condition for the fictitious constraint
γ := a ∧ b. Table 4.1 shows the possible validation results of this condition. The first
column shows the number of the possibility, the second and the third column the values
for a and b, and the fourth column the validation result σ(γ). The expected result
ς(γ) as well as the expected results for a and b are ‘true‘ (‘true‘ indicates a consistent
validation). In the fifth column the scope for the re-validation is shown (S(γ)) and in
the sixth column the cause of scope elements (ζe.p) of the inconsistency (a validation to
‘false‘). The cause of expressions (ζǫ) includes all expressions of a constraint validation,
where the expected result differs the validated result. Therefore, only the cause of scope
elements is listed in the table. The last column shows which parts of the expression
must be repaired (R(γ)) so that the constraint validation becomes consistent. a and b in
this example are placeholders for other expressions that probably access model element
properties. For simplicity, in the scope (S(γ)), cause (ζe.p(γ)) and the repairs (R(γ)),
the expressions a and b are representative for expressions that access model elements,
i. e., R(a) means to repair the accessed model element property accessed by a.

In the first line a and b are ‘false‘ and therefore the validation result is ‘false‘, i. e.,
inconsistent. For the re-validation of this expression it is enough to keep a or b, because if
we, for example, keep a and after a modification a becomes ‘true‘ we have to re-validate
b anyhow to get the new validation result (we do not consider shortcut validation). On
the other hand, if b becomes ‘true‘ the validation result can only change if a also becomes
‘true‘. So, it does not matter that the modification of b does not trigger a re-validation.
Hence, it will be enough to keep one of those two expressions in the scope. However,
the cause for this inconsistency includes a and b because both caused the inconsistency.
Therefore, the repair for this inconsistency includes the repairs for a and for b. This is a
combination of repairs denoted by a ‘+‘. To repair a and b more than one action might
be needed. This depends on the expressions behind a and b explained later in Chapter 5.

40



4.2 Boolean Expressions

The second validation is still inconsistent, only a validates to ‘true‘. Now, the scope of
this validation must be b, because only if b changes the validation result of this expression
can change. The validation of a can be dismissed, but when b changes a must be re-
validated. The cause of this validation is reduced to b only and therefore repairs have
to be generated for b only. The third validation where a is ‘false‘ and b ‘true‘ is similar
except a and b must be exchanged.

The fourth validation result is ‘true‘ (consistent) because both, a and b are ‘true‘.
The scope of this validation must include a and b, because a change of one or both of
them will affect the validation result of the validation. The cause and the repairs are
empty because no inconsistency has been detected.

4.2.2 Negation

The negation is the most important operation because it allows the transformation of,
for example, a conjunction into a disjunction or implication as well as from an universal
quantifier to an existential quantifier. The basic operation of a negation is the inversion of
the validation result and the expected result of the argument is also inverted. Moreover,
it affects the generation of concrete values for the repair actions. To illustrate the effects
of a negation we use this operation in combination with other expressions shown in the
next sections.

4.2.3 Negated Conjunctions

For illustration we negate the example conjunction: γ := ¬(a ∧ b). The expected result
for γ is still ‘true‘ but for the conjunction the expected result now is ‘false‘. Table 4.2
shows the validations of the negated conjunction. As can be seen, the scope of the
validation remains the same as for the conjunction, i. e., the negation of a conjunction
does not influence the scope of the expression. Different is the situation for the cause
and the repairs.

An inconsistency occurred only for the fourth validation (the one that was consistent
for the non negated conjunction) and the cause includes a and b. To repair this incon-
sistency, it is now sufficient to repair a or b (denoted by a ‘•‘), i. e., a negation makes a
combination of repairs to an alternative of repairs. Therefore, for each possible validation
result of a conjunction a separate cause and set of repairs can be generated regarding
the expected result of the conjunction and the validation results of the arguments.

4.2.4 Disjunctions

When we invert a and b (γ := ¬(¬a ∧ ¬b)), we get a disjunction γ := a ∨ b (DeMorgan’s
Law1):

¬(¬a ∧ ¬b) ≡ a ∨ b

1Augustus DeMorgan, 1806-1871, British mathematician and logician

41



4. BASIC PRINCIPLES

a b σ(γ) S(γ) ζe.p(γ) R(γ)

1 false false true {a} or {b} ∅ ∅
2 true false true {b} ∅ ∅

3 false true true {a} ∅ ∅
4 true true false {a, b} {a, b} R(a) • R(b)

Table 4.2: Validations of a Negated Conjunction γ := ¬(a ∧ b)

a b σ(γ) S(γ) ζe.p(γ) R(γ)

1 false false false {a, b} {a, b} R(a) • R(b)
2 true false true {a} ∅ ∅

3 false true true {b} ∅ ∅
4 true true true {a} or {b} ∅ ∅

Table 4.3: Validations of a Disjunction γ := a ∨ b

Table 4.3 shows the validations of a disjunction. In contrast to the conjunction, in
the first case where both arguments are ‘false‘, the scope elements from a and b must
be kept in the scope because if either one of them changes the overall validation result
of this expression will change. But for the fourth validation, where both arguments are
‘true‘, it is sufficient to keep only the scope elements of one of the arguments in the
scope because to change the overall validation result of a disjunction both of them must
change their result. In the other two cases the scope elements from the argument that
validates to ‘true‘ must be kept in the scope, because if this argument changes then the
second must be validated to determine if the expression will change its validation result.
The other argument that validates to ‘false‘ can change its result without any effect on
the overall validation result of the disjunction.

A disjunction validates to ‘false‘ only (i. e., inconsistent) if both arguments validate
to ‘false‘. Hence, the cause for this inconsistency is a and b. However, to resolve the
inconsistency it is sufficient to repair only one of the two arguments. Hence we get two
alternatives to resolve the inconsistency, repair a or repair b.

4.2.5 Implications

Another important expression in first order logic is the implication γ := a ⇒ b. An
implication can be expressed as disjunction or conjunction:

a ⇒ b ≡ ¬a ∨ b

a ⇒ b ≡ ¬(a ∧ ¬b)

Table 4.4 shows the validation results for an implication where the expected result is
‘true‘. An implication validates to ‘false‘ only if a is ‘true‘ and b is ‘false‘, otherwise the

42



4.2 Boolean Expressions

a b σ(γ) S(γ) ζe.p(γ) R(γ)

1 false false true {a} ∅ ∅
2 true false false {a, b} {a, b} R(a) • R(b)
3 false true true {a} ∅ ∅
4 true true true {b} ∅ ∅

Table 4.4: Validations of an Implication γ := a ⇒ b

validation result is ‘true‘. The scope for the first validation, where both arguments are
‘false‘, must be a because only then, if a changes, the result of b can have an effect on
the overall validation result of the expression (as can be seen in validation three). The
second validation is the one that is inconsistent and the scope for this validation contains
both arguments because a change of one of them can change the overall validation result.
As a consequence, both arguments cause the inconsistency. To resolve this inconsistency
it is sufficient to repair a or to repair b. The scope of the fourth validation, where both
arguments are ‘true‘, contains b only because only if b becomes ‘false‘ the validation
result of the expression changes. However, a must be validated to get the new validation
result and the new scope/cause/repairs. If a becomes ‘false‘, the overall validation result
does not change, hence there is no need to keep a in the scope.

4.2.6 Universal Quantifiers

To illustrate an universal quantifier we take the condition γ := ∀a ∈ A : a. Table 4.5
shows the validations of an universal quantifier on a set of two elements where the
condition must hold. In contrast to the conjunction where the second and the third
column showed the arguments of the expression, the second column now shows the
source set of the quantifier. For simplicity the set of elements are Boolean values and
the condition is simply the element of the source set and to illustrate the basic principle of
quantifier the number of variables (number of elements from the source) for the quantifier
condition is limited to one, but the basic principle is applicable to conditions with more
than one variable.

The first validation fails because all elements in the source are ‘false‘. The scope
that must be maintained for this validation includes the source of the elements (usually
the source is determined from the model, i. e., it is a property call). Additionally to the
source, one validation of the quantifier‘s conditions must be kept in the scope, because an
addition or deletion of an element might have an influence of the quantifier’s validation
result, if, for example, all elements are removed where the condition validates to ‘false‘.
To keep one validation that validates to ‘false‘ is sufficient because all validations (this
includes the one that is kept in the scope) must be ‘true‘. The change of the one element
leads to further re-validations which lead to a new scope (another failed validation will
be kept in the scope if there are more) and probably to a new validation result (if all
other validations are ‘true‘) of the overall quantifier.

43



4. BASIC PRINCIPLES

A = {a1, a2} σ(γ) S(γ) ζe.p(γ) R(γ)

1 {false, false} false
{A, a1}

or
{A, a2}

{A, a1, a2}
〈−, A, a1〉 + 〈−, A, a2〉

•
R(a1) + R(a2)

2 {true, false} false {A, a2} {A, a2}
〈−, A, a2〉

•
R(a2)

3 {false, true} false {A, a1} {A, a1}
〈−, A, a1〉

•
R(a1)

4 {true, true} true {A, a1, a2} ∅ ∅
5 ∅ true {A} ∅ ∅

Table 4.5: Validations of an Universal Quantifier γ := ∀a ∈ A : a

In contrast to the scope, the cause of that inconsistency includes the source and all the
failed validations of the quantifier‘s condition, because each failed validation violates the
condition and cause the inconsistency. To repair this inconsistency several alternatives
exist. Removing (denoted by a ‘−‘) these elements from the source that violated the
quantifiers condition, repairing the failed validations of the quantifiers condition, or a
combination of the first two alternatives, i. e., deleting some elements and repairing the
remaining failed validations.

While the first line of Table 4.5 shows a validation where all elements of the source
violate the quantifier‘s condition, line two and three show validations where only one
element of the source violates the condition. In these cases it is sufficient to keep the
source and the elements from the violated condition in the scope and in the cause. To
repair these inconsistencies two alternatives exist: 1) deleting the element that violates
the quantifiers conditions or 2) repairing the validation of the quantifier‘s condition that
fails.

Line four and five show validations that do not cause an inconsistency. In these
cases the source must be kept in the scope because an addition of an element to the
source might lead to a violation of the quantifier‘s condition. If the source is not empty
(line four) then all the validations of the quantifier‘s condition must be kept in the
scope because each change to one validation can change (i. e., the quantifier becomes
inconsistent) the overall validation result of the quantifier.

4.2.7 Existential Quantifiers

To illustrate an existential quantifier we start with the negation of the universal quantifier
γ := ¬∀a ∈ A : a. Table Table 4.6 shows how the negated universal quantifier is
validated on a set of two elements, the required scope for re-validation, the cause of an
inconsistency and the parts that must be repaired. The expected result for the complete
expression is ‘true‘ but ‘false‘ for the universal quantifier itself. As can been seen,

44



4.2 Boolean Expressions

A = {a1, a2} σ(γ) S(γ) ζe.p(γ) R(γ)

1 {false, false} true {A, a1} or {A, a2} ∅ ∅
2 {true, false} true {A, a2} ∅ ∅

3 {false, true} true {A, a1} ∅ ∅

4 {true, true} false {A, a1, a2} {A, a1, a2}
{〈+, A, a3〉}•
R(a1) • R(a2)

5 ∅ false {A} {A} {〈+, A, a3〉}

Table 4.6: Validations of a negated Universal Quantifier γ := ¬∀a ∈ A : a

the scope remains the same as for the universal quantifier. But the validation now is
inconsistent for the cases that were consistent in the non negated quantifier. For the case
where both elements are ‘true‘, the cause is the source of the quantifier and all elements
in the source. But to repair this inconsistency it is enough to add an element (denoted
by a ‘+‘) to the source (i. e., a deletion becomes an addition due to a negation of the
expression) that validates to ‘false‘. An alternative is also to repair one of the validations
(a combination becomes an alternative due to the negation). A combination of additions
(deletions for the non negated quantifier) and repairing some of the validations does not
make necessarily sense in that case. If the set is empty, the cause is the source of the
quantifier only, i. e., only adding an element to the source of the quantifier that validates
to ‘false‘ can resolve this inconsistency.

When we negated the condition of the universal quantifier, we get the existential
quantifier:

¬∀a ∈ A : ¬a ≡ ∃a ∈ A : a

¬∃a ∈ A : ¬a ≡ ∀a ∈ A : a

This can be proven by DeMorgan’s law, as an universal quantifier can be seen as a
cascading conjunction and an existential quantifier as a cascading disjunction for which
DeMorgan’s law is valid. Table 4.7 shows the validations of the existential quantifier. The
only validations where this expression is ‘false‘ are when the condition of this quantifier
validates to ‘false‘ for all elements from the source or if the source set is empty (validation
one and five).

4.2.8 Equality Relations

The equality relation has, like the conjunction, two arguments that will be compared
against each other and validates to a Boolean result, ‘true‘ if both arguments are equal
and ‘false‘ otherwise. The arguments of this relation can be constants or values from
element properties. This expression type provides besides the source of a quantifier,
concrete model element properties for the scope, cause and the repairs. Moreover, it
provides concrete data how a model element property can be modified to resolve an
inconsistency. The equality relation itself has an expected result but its arguments do

45



4. BASIC PRINCIPLES

A = {a1, a2} σ(γ) S(γ) ζe.p(γ) R(γ)

1 {false, false} false {A, a1, a2} {A, a1, a2}
{〈+, A, a3〉}•
R(a1) • R(a2)

2 {true, false} true {A, a1} ∅ ∅
3 {false, true} true {A, a2} ∅ ∅

4 {true, true} true {A, a1} or {A, a2} ∅ ∅
5 ∅ false {A} {A} {〈+, A, a3〉}

Table 4.7: Validations of an Existential Quantifier γ := ∃a ∈ A : a

a b σ(γ) S(γ) ζe.p(γ) R(γ)

1 ‘x‘ ‘x‘ true {a, b} ∅ ∅
2 ‘x‘ ‘y‘ false {a, b} {a, b} {〈×, a, ‘y‘〉} • {〈×, b, ‘x‘〉}
3 ‘x‘ const(‘x‘) true {a} ∅ ∅
4 ‘x‘ const(‘y‘) false {a} {a} {×, a, ‘y‘}

Table 4.8: Validations of an Equality Relation γ := a = b

not have one (cf. Section 2.4). Considering a single equality relation γ := a = b, the
expected result ‘true‘ is to be considered consistent.

Table 4.8 shows the validation of an equality relation. The first two rows consider the
comparison of two elements that are modifiable, i. e., the values can be changed (e. g.,
properties of elements). In contrast, the bottom two lines consider the comparison of on
modifiable element and one constant value that cannot be changed. A constant value is
considered as a part of the expression only (i. e., can not be in the cause of model element
properties, but in the cause of expressions) and cannot be changed by a modification of
the model.

The scope and the cause (in the case of an inconsistency) of the equality relation
contains all model element properties of the expressions, regardless of the actual valida-
tion result of the expressions. To repair an equality relation, there exist two alternatives
for the case of two modifiable elements: the first alternative modifies (denoted by a ‘×‘)
the value from a to the value of b and the second alternative modifies the value from b
to the value of a. If only one modifiable element exists in the relation, then the value of
the modifiable element can be modified to the constant value.

4.2.9 Inequality Relations

To generate concrete repairs it is not enough to know the logical relationships, but also
to know values that must be assigned to locations in the system. The equality relation
is such an operation that provides information about what values can be assigned to
specific properties of elements in a system. But what if the equality relation is negated?
An inequality (¬(a = b) ≡ (a 6= b)) relation expresses that an element property must

46



4.3 Property Call Expressions

a b σ(γ) S(γ) ζe.p(γ) R(γ)

1 ‘x‘ ‘x‘ false {a, b} {a, b} {〈×, a, ? \ ‘x‘〉} • {〈×, b, ? \ ‘x‘〉}
2 ‘x‘ ‘y‘ true {a, b} ∅ ∅

3 ‘x‘ const(‘x‘) false {a} {a} {×, a, ? \ ‘x‘}
4 ‘x‘ const(‘y‘) true {a} ∅ ∅

Table 4.9: Validations of an Inequality Relation γ := a 6= b

not have a specific value but it does not provide information what value can/should be
applied to this property.

In Table 4.9 the validations of an inequality relation are shown. In contrast to the
equality relation, it is expected that the two arguments are not equal (if the expected
result for the equality relation would be ‘false‘). The second and fourth validation are
consistent. The scopes for these validations are the same as for the consistent validation
of the equality relations (the property calls of the relation’s arguments).

The first validation show the comparison of two property calls that have the same
value and the third validation shows the validation of one property call an one constant
argument. The scope and the cause for the first validation include both property calls
and for the third validation only the one property call that is in the scope and cause,
respectively. To repair the inconsistency one of the two arguments must be changed but,
in contrast to the equality relation where single concrete values could be determined for
the repairs, no concrete value can be generated. Theoretically an infinite number of pos-
sible values exists (each text except ‘x‘) that can be chosen to resolve this inconsistency,
hence no concrete value can be determined (indicated by ? \ ‘x‘ — causes a conditional
concrete repair action).

To overcome this circumstance two solutions exists: 1) request user input for an
appropriate value or 2) try to find a value from other constraint validations. In Chapter 5
we will look into the second possibility to determine concrete values for such repairs.

4.3 Property Call Expressions

Property call expressions provide data that come from the model element properties.
These expressions are the basis for the locations where repair actions must be applied as
well as for the determination of how to repair an inconsistency — the concrete values.
During the validation of a property call expression a scope element is generated and the
value of the element property is the validation result of this expression. This expression
does not have an expected result and does not have a scope nor a cause. But the scope
element of that expression is part of a scope or cause. Furthermore, a scope element
represented by one property call expression can be part of more property call expressions
in the same constraint or in other constraints, i. e., a model element property can be
accessed more than once by the set of constraints. In the illustrations for the logical

47



4. BASIC PRINCIPLES

elements the elements a, b as well as the set A acted as placeholders for expressions that
potentially can be property call expressions.

In addition, a property call expression can be a chain of property call expressions,
i. e., the result of the first property call (e1.p1 7→ e2) is the source model element for the
second property call (e2.p2).

(e2.p2) ◦ (e1.p1) ≡ e1.p1.p2

It follows that a property call expression can provide more than one scope element for
the scope and the cause. Moreover, this also has consequences for the repairs. The scope
elements provided by the chain of property calls are used for the repairs determined from
the parental Boolean expression, e. g., an universal quantifier generates an add repair
for the scope element representing the source (e1.p1.p2) of the quantifier, hence, in our
example this would be 〈+, e1.p1.p2, ‘true‘〉. For all scope elements provided by the earlier
property call expressions an abstract modify repair will be generated (〈×, e1.p1, ?〉).

4.4 Summary

In this chapter the basic principles our approach is based on are shown. The concept
of the expected and validated result for the smallest units of a constraint — the ex-
pressions — is introduced together with the concept is used to calculate the scope of a
constraint validation and the cause of an inconsistency as well as the repairs for those
basic expressions.

48



Chapter 5

CiM Approach

“If you can dream it, you can do it.”
Walt Disney, American Cartoonist, 1901-1966

In the last chapter the basic principles of our approach are shown based on single
expressions. However, a constraint does not consists of a single expression, but of a set
of interrelated expressions, i. e., one expression is the argument of another. How the
interrelated expressions are used for the consistency management the CiM (Consistency
in Models) approach is introduced in this chapter. The working, i. e., detecting and
resolving inconsistencies based on an arbitrary set of constraints are illustrated on the
example model and constraints introduced in Chapter 2.

5.1 Overview

It is presumed an arbitrary set of constraints and a model on which the constraints will
validated. The working of the CiM approach is a four-stage process shown in Figure 5.1.

Stage one is the validation of the constraints to detect inconsistencies. The validation
will be logged, i. e., for each expression the expected and validated results are stored,
as well as the relationships of the expressions. Stage two calculates the scope to make
the constraint validation ready for a re-validation, if one of the elements in the scope
changes. Stage three is entered only, if an inconsistency has been detected, and the cause
of that inconsistency is determined. Stage four calculates out of the cause the repairs.
To resolve an inconsistency a set of one to many single repair actions are needed. This
set of repair actions build a repair. Each of the repair actions can have side effects
on other constraint validations that will be calculated too. The calculated results, the
repairs and their side effects, will be presented to the user who decides how to deal with
the inconsistencies, i. e., if and what repair should be applied on the model.

Figure 5.2 briefly recaps the example from Chapter 2 and shows an excerpt of the
example UML diagrams and the constraint that will be validated on them. This example
will be used to illustrate the detailed working of the approach shown in the next sections.

49



5. CIM APPROACH

Stage 1:
Validation

Stage 2:
The Scope

Stage 3:
The Cause

Stage 4:
Repairs and Side
Effects

Model,

Constraints

complete validation

inconsistent validation

filtered validation

change made

apply repair

waiting
for a

change

Figure 5.1: Working of the CiM Approach

5.2 Stage 1: Validation

To illustrate the working we introduce the basic data structure our approach is based on
— the validation tree [90]. A validation tree represents the validation of a constraints,
i. e., it consists of the expressions from the constraint condition with their validation
results. In Algorithm 1 is shown how the validation tree is built. The build up process
starts at the root expression of the constraint (Line 1 to Line 3). The recursive build up
process of the expression starts with the root expression (Line 11). First a node for the
expression will be created (Line 12). If the expression is not a property call expression
(Line 13) then it will be checked if there exists a parent expression (Line 14). If a parent
expression exists then it will be checked if the parent is a negation (Line 15). If the
parent expression is a negation then the expected result of the expression e will be set
to the inverted expected result of its parent. Otherwise the expected result will be set
to the same expected result as of the parent. In the case where no parent exists (the
root expression), the expected result will be set to ‘true‘.

50



5.2 Stage 1: Validation

Display

visible

stop()
play/pause()

VideoServer

connect()
stream()
pause()

Streamer

stream()

*

1

d:Display s:VideoServer

wait

context Message:

self.receiveEvent.covered-> forAll(l:Lifeline|

l.represents.type.ownedOperation->exists(o:Operation|

self.name=o.name))

Figure 5.2: Excerpt of the example Constraint, UML Class and Sequence Diagram

γ1(wait)

∀

?

l ∈ ǫp.1

ǫ1

Figure 5.3: Validation Tree for γ1(wait) — Step 1

After that, for all arguments of the expression e recursively the validation tree will
be built (Line 23). Then a branch between the node for the expression e and the new
created node for the argument expression will be created (Line 25). When the validation
tree has been build completely, the validation process starts by applying the operation
of the expression e on all the arguments of the expression e in the recursive climb up.

To illustrate the build up of the validation tree we start with a simplified constraint
γ1 := ∀l ∈ ǫp.1 : ǫ1 validated on the Message wait. Figure 5.3 shows the first step until
the first recursive call of the build validation tree algorithm.

Step 1: The first expression validated is the root expression ǫ0 which is equivalent the
Constraint 1 validated on the Message wait. The root expression has as its arguments
the property call expression for the Lifelines that the Message is sent to (ǫp.1) and a
condition (ǫ1) that must hold for the elements of ǫp.1 that are assigned to the variable l.
Later in the validation tree we indicate the assigned values to a variable using an arrow,
e. g., l 7→ ‘s‘, which means that the value ‘s‘ is assigned to the variable l. The validated

51



5. CIM APPROACH

Algorithm 1 Building the Validation Tree

1 Bui ldVal idat ionTree ( Constra int c )
2 Express ion e = RootExpression o f c
3 Bui ldVal idat ionTree ( e )
4 i f e . v a l i d a t i o n R e s u l t = true

5 c−>c o n s i s t e n t
6 else i f e . v a l i d a t i o n R e s u l t = f a l s e
7 c−>i n c o n s i s t e n t
8 endif

9 end /∗ Bui ldVa l ida i t i onTree ( Constra int ) ∗/
10

11 Bui ldVal idat ionTree ( Express ion e )
12 CreateNode n f o r e
13 i f e i s not PropertyCal lExpre s s ion then

14 i f e . hasParent then

15 i f e . parent i s Negation then

16 e . expectedResu lt = not e . parent . expectedResu lt
17 else

18 a . expectedResu lt = e . parnet . expectedResu lt
19 endif

20 else

21 e . expectedResu lt = true

22 endif

23 f o r a l l Express ion a in e . arguments
24 Bui ldVal idat ionTree ( a )
25 CreateBranch from n to the node o f a
26 endforall

27 endif

28 e . v a l i d a t i o n R e s u l t = Apply e . operat ion on e . arguments
29 end /∗ Bui ldVa l ida i t i onTree ( Express ion ) ∗/

52



5.2 Stage 1: Validation

γ1(wait)

∀

?

l ∈ self 7→ ‘wait‘.receiveEvent.covered

∃

?

o ∈ ǫp.2

ǫ2

Figure 5.4: Validation Tree for γ1(wait) — Step 2

result is at the moment of the build up process unknown (indicated as ‘?‘). The property
call expression ǫp.1 consists of two cascading property calls (ǫp.1 ◦ ǫp.1.1).

ǫ0 ≡ γ1(wait)

ǫ0 := 〈∀, {ǫp.1, ǫ1}, ?〉

ǫp.1 := 〈covered, ǫp.1.1.σ, ǫ0, {‘s‘}〉

ǫp.1.1 := 〈receiveEvent, ‘wait‘, ǫp.1, MessageOccurenceSpecification〉

ǫ1 := 〈∃, {ǫp.2, ǫ2}, ǫ0, ?, ‘true‘〉

Step 2: The condition (ǫ1) of a quantifier must be validated for the elements from
the source (ǫp.1). As this property contains only one Lifeline, only one expression of
the quantifiers condition will be created. Figure 5.4 shows the expressions that are
newly created in the next step in the build up process of the validation tree. The newly
created expression is an existential quantifier that has as its source (ǫp.2) the Operations
of the Class that represents the type of the Lifeline assigned to the variable l from the
universal quantifier, the parent expression of the existential quantifier. The property
call ǫp.2 is a cascading property call too, consisting of three cascading property calls:
ǫp.2 ◦ ǫp.2.1 ◦ ǫp.2.2. The result are the three Operations of the Class VideoServer. The
condition of the existential quantifier is the equality relation (ǫ2) that compares if the
name of the Message wait is equal the name of an Operation of the class. The result
of the existential quantifier, its parent, the universal quantifier and consequentially the
validation results of the expressions are still unknown until now.

ǫp.2 := 〈ownedOperation, ǫp.2.1.σ, ǫ1, {‘stream‘, ‘connect‘, ‘pause‘}〉

ǫp.2.1 := 〈type, ǫp.2.2.σ, ǫp.2, ‘V ideoServer‘〉

ǫp.2.2 := 〈represents, l 7→ ‘s‘, ǫp.2.1, Property〉

ǫ2 := 〈=, {ǫp.3.1, ǫp.3.2}, ǫ1, ?, ‘true‘〉

Step 3: The expressions for the condition (ǫ2) of the existential quantifier will
be built. This expression must be validated three times (ǫ2−1 to ǫ2−3), one time for

53



5. CIM APPROACH

γ1(wait) 7→ Inconsistent

∀

?

l ∈ self 7→ ‘wait‘.receiveEvent.covered

∃

?

o ∈ l 7→ ‘s‘.represents.type.ownedOperation

=
?

ǫp.3−1.1 ǫp.3−1.2

=

?

ǫp.3−2.1 ǫp.3−2.2

=
?

ǫp.3−3.1 ǫp.3−3.2

Figure 5.5: Validation Tree for γ1(wait) — Step 3

each Operation of the Class VideoServer. The three validations are represented as
the three lower branches of the existential quantifier, represented as the equality nodes
(=). Figure 5.5 shows the created equality relation expressions beneath the existential
quantifier. The branches of the equality relations are property calls. On the left-hand
side the name property of the Message and on the right-hand side the name property of
the Operations. The validation results of the equality relations and the other Boolean
expressions are still unknown.

ǫp.3−1.1 := 〈name, self 7→ ‘wait‘, ǫ2−1, ‘wait‘〉

ǫp.3−1.2 := 〈name, o 7→ ‘stream‘, ǫ2−1, ‘stream‘〉

ǫp.3−2.1 := 〈name, self 7→ ‘wait‘, ǫ2−2, ‘wait‘〉

ǫp.3−2.2 := 〈name, o 7→ ‘connect‘, ǫ2−2, ‘connect‘〉

ǫp.3−3.1 := 〈name, self 7→ ‘wait‘, ǫ2−3, ‘wait‘〉

ǫp.3−3.2 := 〈name, o 7→ ‘pause‘, ǫ2−3, ‘pause‘〉

Step 4: The validation tree will be validated, i. e., the result of constraint validation
will be calculated. Until now, only the validation results for these expressions are known
that build the leaves of the validation tree, i. e., the property calls of the quantifiers.
The branches of the equality relation are also leaves and underneath these property calls
no expressions to generate are left, i. e., the validation tree is build complete and the
validation starts.

First the property calls for the Message name and the Operation (ǫp.3−x.x) names are
validated. These results are compared in the equality relations (ǫ2−x) and a validation
result is calculated (in our case all validation results are ‘false‘). Figure 5.6 shows the
complete validation tree including the validation results of the Boolean expressions. The

54



5.3 Stage 2: The Scope

γ1(wait) 7→ Inconsistent

∀

false

l ∈ self 7→ ‘wait‘.receiveEvent.covered

∃

false

o ∈ l 7→ ‘s‘.represents.type.ownedOperation

=
false

self 7→ ‘wait‘.name o 7→ ‘stream‘.name =

false

self 7→ ‘wait‘.name o 7→ ‘connect‘.name

=
false

self 7→ ‘wait‘.name o 7→ ‘pause‘.name

Figure 5.6: Complete Validation Tree for γ1(wait)

validation result of an expression is propagated to its parent and this parent calculates
its own validation result that is propagated to its parent again. This propagation process
stops when the root expression has been reached and the validation result of the root
expression indicates whether the constraint is violated (‘false‘7→ Inconsistent) or not
(‘true‘7→ Consistent). What we can see here is that the build-up of a validation tree is
top-down whereas the validation is bottom-up, starting as soon as a leaf (property call
expression) has been reached.

5.3 Stage 2: The Scope

The scope (S) of a constraint validation are the model element properties (scope ele-
ments) that are accessed during the constraint validation and do have an influence on
the validation result. The scope is needed to trigger a re-validation of the constraint or
parts thereof.

5.3.1 Calculating The Scope

Constraints consist of expressions which have arguments. As shown in Chapter 4, what
arguments influence the validation result depends on the validation results of the ar-
guments only. Table 5.1 summarizes the scopes for Boolean expressions. The Boolean
values are shortened to ‘f‘ for ‘false‘ and ‘t‘ for ‘true‘. Please note that the negation does
not influence the scope. In the following we summarize the Boolean expression from the
validation tree in Figure 5.6. The Boolean arguments of the expressions are replaced
with their validation results. Expression ǫ1 has instead of ǫ2 the validation results of each
validated branch (ǫ2−1 to ǫ2−3) in its arguments. In the brackets next to the validation

55



5. CIM APPROACH

a b A
S

a ∧ b a ∨ b a ⇒ b a = b ∀x ∈ A : x ∃x ∈ A : x

f f {a, b}
{a}
or
{b}

{a, b} {a} {a, b}
{A, a}

or
{A, b}

{A, a, b}

t f {a, b} {b} {a} {a, b} {a, b} {A, b} {A, a}
f t {a, b} {a} {b} {a} {a, b} {A, a} {A, b}

t t {a, b} {a, b}
{a}
or
{b}

{b} {a, b} {A, a, b}
{A, a}

or
{A, b}

∅ {A} {A}

Table 5.1: Scope for the Boolean Expression Types and Argument Results

result the expressions are given that provide this result. The only expressions that are
not replaced with their validation results are the property call expression. These are the
expressions that will provide the scope elements for the scope.

ǫ0 := 〈∀, {ǫp.1, ‘false‘(ǫ1)}, ‘false‘〉

ǫ1 := 〈∃, {ǫp.2, ‘false‘(ǫ2−1), ‘false‘(ǫ2−2), ‘false‘(ǫ2−3)}, ǫ0, ‘false‘, ‘true‘〉

ǫ2−1 := 〈=, {ǫp.3−1.1, ǫp.3−1.2}, ǫ1, ‘false‘, ‘true‘〉

ǫ2−2 := 〈=, {ǫp.3−2.1, ǫp.3−2.2}, ǫ1, ‘false‘, ‘true‘〉

ǫ2−3 := 〈=, {ǫp.3−3.1, ǫp.3−3.2}, ǫ1, ‘false‘, ‘true‘〉

The scope of a validation is calculated after the validation tree has been generated.
In Algorithm 2 the additional calculations (Line 34) to filter the validation tree is shown.
The FilterArguments algorithm filters the validation tree, i. e., the validation tree will
be changed. All arguments will be iterated and based on the validation result of the
expression e and the validation result of the argument a, the branch between those
two expression will be deleted and the nodes for the arguments are removed. To check
whether the branch and the node must be deleted is done with a lookup in Table 5.1.
The leaves of the remaining validation tree represents the scope of the validation.

Algorithm 2 and Table 5.1 is applied onto the expressions to calculate the scope
starting at the root expression ǫ0. This is an universal quantifier that has only one
argument that validates to ‘false‘ which comes from ǫ1. For an universal quantifier the
source and the only one argument that validates to ‘false‘ must be added to the scope
in that case, i. e., the scope elements from ǫp.1 and ǫp.1.1 as well as the scope elements
beneath ǫ1.

S(γ1(wait)) := {self 7→ ‘wait‘.receiveEvent,

56



5.3 Stage 2: The Scope

Algorithm 2 Building the Scope

30 /∗ Bui ld ing the V a l i d a i t i o n Tree ∗/
31 FilterArguments ( e )
32 end /∗ Bui ldVa l ida i t i onTree ( Constra int ) ∗/
33

34 FilterArguments ( e )
35 f o r a l l Express ion a in e . arguments
36 Based on e . v a l i d a t i o n R e s u l t and a . v a l i d a t i o n r e s u l t /∗ Table

lookup ∗/
37 d e l e t e branch between node o f e and node o f a
38 d e l e t e node a
39 endforall

40 end /∗ FilterArguments ∗/

self 7→ ‘wait‘.receiveEvent.covered}

∪S(ǫ1)

ǫ1 is an existential quantifier where each of the three arguments validates to ‘false‘. In
this case we have to add the scope elements from the source of the existential quantifier
to the scope (ǫp.2, ǫp.2.1 and ǫp.2.2) and the scope elements from all the arguments that
validates to ‘false‘.

S(γ1(wait)) := {self 7→ ‘wait‘.receiveEvent,

self 7→ ‘wait‘.receiveEvent.covered,

l 7→ ‘s‘.represents,

l 7→ ‘s‘.represents.type,

l 7→ ‘s‘.represents.type.ownedOperation}

∪S(ǫ2−1) ∪ S(ǫ2−2) ∪ S(ǫ2−3)

The three arguments that validate to ‘false‘ are the equality relations ǫ2−1 to ǫ2−3.
As these are equality relations, the scope elements from both arguments must be added
to the scope. ǫ3−1.1 accesses the name property of the Message wait. This scope element
is the same as for the expressions ǫ3−2.1 and ǫ3−3.1. The other scope elements that are
accessed by the equality relations are different for the three equality relations and for the
three Operations from the Class VideoServer. The resulting scope for this validation
is as follows:

S(γ1(wait)) := {self 7→ ‘wait‘.receiveEvent,

self 7→ ‘wait‘.receiveEvent.covered,

l 7→ ‘s‘.represents,

l 7→ ‘s‘.represents.type,

57



5. CIM APPROACH

γ1(connect) 7→ Consistent

∀

true

l ∈ self 7→ ‘connect‘.receiveEvent.covered

∃

true

o ∈ l 7→ ‘s‘.represents.type.ownedOperation

=
false

self 7→ ‘connect‘.name o 7→ ‘stream‘.name =

true

self 7→ ‘connect‘.name o 7→ ‘connect‘.name

=
false

self 7→ ‘connect‘.name o 7→ ‘pause‘.name

Figure 5.7: Validation Tree for γ1(connect)

l 7→ ‘s‘.represents.type.ownedOperation,

self 7→ ‘wait‘.name,

o 7→ ‘stream‘.name,

o 7→ ‘connect‘.name,

o 7→ ‘pause‘.name}

In total seven scope elements are in the scope of this validation and therefore, if
one of these properties changes, a re-validation of the constraint is needed. The size of
the scope is not always the same for the same constraint and may differ for different
validations.

Another validation of Constraint 1 on the Message connect is shown in Figure 5.7.
This validation does not violate the constraint (Consistent), but when we consider the
complete validation nearly the same model element properties are accessed except the
Message’s properties. But in contrast to the validation on the Message wait, one argu-
ment of the existential quantifier validates to ‘true‘ and therefore, the complete validation
is also ‘true‘. From Table 5.1 we know that the scope must be calculated for those argu-
ments of an existential quantifier that validates to ‘true‘, so the resulting scope contains
two scope elements less, the two Operation names for stream and pause. The branches
(arguments) where there is no need to consider them for the scope calculation are indi-
cated as dashed lines in Figure 5.7. The savings do not lead to a reduced re-validation
effort only, but also reduce the used memory. Why and how is discussed in the next
section.

58



5.3 Stage 2: The Scope

5.3.2 Triggering a Re-Validation

Using a scope to reduce the re-validation effort is not new, because it is already used
in Egyed’s ModelAnalyzer approach [39]. However, this approach was not able to
filter out scope elements that do not have an influence on the validation result and a
change of one scope element leads to a complete re-validation of the constraint. In this
thesis we follow a different approach to re-validate a constraint and obtain better results
regarding the re-validation for constraints after a change occurred in the model.

In the last section we showed how a validation tree is build and how the scope
is calculated out of the validation tree. The validation tree is kept in memory and
only these parts of a validation tree will be re-validated that are affected by a model
change (similar to the RETE algorithm [50]). Lower re-validation times of RETE based
algorithm result in a higher consumption of memory which might become a problem on
larger models. However, the filtering of the scope elements, shown in the last section,
leads also to a minimal validation tree and therefore to a significant reduction of the
used memory, which is shown in the evaluations in Chapter 7.

Algorithm 3 Constraint Re-Validation

1 ElementPropertyChanged ( ScopeElement e . p)
2 f o r a l l PropertyCal lExpre ss ion e f o r e . p
3 ReValidate ( e )
4 endforall

5 end /∗ ElementPropertyChanged ∗/
6

7 ReValidate ( e )
8 o ldR esu l t = e . v a l i d a t i o n R e s u l t
9 e . v a l i d a t i o n R e s u l t = Apply e . operat ion on e . arguments /∗ Inc ludes re−

v a l i d a t i o n o f a l l remaining arguments based on a t a b l e lookup ∗/
10 i f o ldR esu l t <> e . v a l i d a t i o n R e s u l t then

11 i f e has parent then

12 ReValidate ( e . parent )
13 else

14 Constra int o f e changes
15 endif

16 endif

17 end /∗ ReValidate ∗/

Algorithm 3 is used for the re-validation of a constraint. For a changed model element
property (a scope element) all property call expressions will be determined that call
this scope element (Line 2). Then for all the determined expressions the ReValidate

algorithm will be called (Line 7). At the beginning the validation result of the last
validation will be stored followed by the re-validation of the expression, i. e., the operation
of the expression is applied on the arguments of the expression that might have changed.
Some of the arguments might need a complete new validation of a validation sub-tree to
get a new validation result (due the scope generation / filtering). This is determined from
Table 5.1. The old validation result is compared to the new validation result (Line 10)

59



5. CIM APPROACH

and if they differ and the expression has a parent, a re-validation of the parent will be
triggered until the top of the validation is reached. If the root expression (has no parent)
is reached and the validation result has been changed, the complete constraint validation
changes its result, i. e., an inconsistent validation becomes consistent and vice versa.

Changing the Operation ‘pause‘ in the Class VideoServer requires a re-validation
of the example constraint validation shown in the validation tree shown in Figure 5.6.
As we already mentioned in the initial validation of the validation tree, the build up
of the validation tree is top-down but the validation is done bottom-up. This is the
same for the re-validation of a constraint. As we know the changed scope element
(ǫp.3−3.2 := 〈name, o 7→ ‘pause‘, ǫ2−3, ‘pause‘〉) we also know where to start with the
re-validation. Figure 5.8 shows the validation tree for this change. The thick lines show
the validation path bottom up, starting at the property call for the Operation name.
The dashed lines are the branches that can be removed after the re-validation and the
thin gray branches remain untouched during the re-validation.

The result of the scope element was ‘pause‘ but after the change in the model the
result now is ‘wait‘. Each change of a validation result of an expression will be propagated
to its parent, the equality relation ǫ2−3. This expression re-validates its second argument,
the name property of the Message wait. This equality relation now validates to ‘true‘,
i. e., it changes its validation result and the new result is propagated to its parent, the
existential quantifier ǫ1. As an existential quantifier needs only one argument to validate
to ‘true‘, this expression changes its validation result which is propagated to its parent,
the universal quantifier ǫ0. As this is the only argument of the universal quantifier, this
expression changes its validation result also to ‘true‘ and therefore, the constraint is not
violated any more. In addition, the scope for this constraint validation can be reduced,
i. e., the two property calls on the other two Operations can be removed from the scope.

As a second change in the model we consider an undo, i. e., we change the name of the
Operation ‘wait‘ back to the name ‘pause‘. Figure 5.9 shows the re-validations for that
change in the validation tree. The re-validation starts at the same location as for the
first change. The equality relation changes its result from ‘true‘ to ‘false‘ and propagates
the result to the parent, the existential quantifier. As an existential quantifier needs at
least one validation of its condition to validate to ‘true‘, the source of the existential
quantifier must be re-validated. The re-validation is needed even when no elements are
added or removed from the source since then (this would trigger a re-validation) because
only Boolean results are cached in the approach to reduce the memory consumption,
hence, property calls must be re-validated in such cases. This is the same as for the
equality relation where only one of the two arguments has been changed but the second
one has to be re-validated as it is a property call expression.

After that the elements that are not validated until now must be validated using
the quantifiers condition. All validations fail, hence the existential quantifier changes its
validation result from ‘true‘ to ‘false‘ and this result will be propagated to its parent, the
universal quantifier. As all elements of the universal quantifiers source have be validated,
this expression changes its validation result from ‘true‘ to ‘false‘ also and the constraint
validation is now inconsistent. The validation tree now is equal the initial validation tree.

60



5.3 Stage 2: The Scope

γ1(wait) 7→ Consistent

∀

false → true

l ∈ self 7→ ‘wait‘.receiveEvent.covered

∃

false → true

o ∈ l 7→ ‘s‘.represents.type.ownedOperation

=
false

self 7→ ‘wait‘.name o 7→ ‘stream‘.name =

false

self 7→ ‘wait‘.name o 7→ ‘connect‘.name

=false → true

self 7→ ‘wait‘.name o 7→ ‘pause‘ → ‘wait‘.name

Figure 5.8: Changing the Name of Operation ‘pause‘ to ‘wait‘ in the Validation Tree for
γ1(wait)

Even in this case the one property call of the universal quantifier needs no re-validation,
i. e., the re-validation effort was reduced.

To show a change that leads to prematurely termination of the re-validation we will
consider the change of the Message named ‘wait‘ to ‘stop‘ in the sequence diagram.
The scope element that represents the name property of the Message wait occurs three
times in the validation tree — the left-hand side of the equality relations. This triggers
three re-validations in the validation tree but the bottom up propagation stops at the
equality relations because they do not change their validation result. Compared to a
complete constraint re-validation two property calls and two quantifier expressions need
no re-validation (see Figure 5.10).

The last change also shows, that a single change in the model can trigger multiple
re-validations in one validation tree but also on other validation trees. If, for example,
an Operation will be added to the Class VideoServer (the property ‘s‘.represents.type.
ownedOperation), this will trigger the re-validation of γ1(stop) and γ1(connect) and the
Operation will be named ‘stop‘. For γ1(wait) this will create a new branch underneath
the existential quantifier that validates to ‘true‘. So, all other branches underneath
the existential quantifier can be removed, the new validation result will be propagated
upwards, and the inconsistent has been resolved.

In the case of γ1(connect) the re-validation stops immediately because a new Opera-

tion in the Class VideoServer has no influence on the validation result of that constraint
validation.

61



5. CIM APPROACH

γ1(wait) 7→ Inconsistent

∀

true → false

l ∈ self 7→ ‘wait‘.receiveEvent.covered

∃

true → false

o ∈ l 7→ ‘s‘.represents.type.ownedOperation

=
false

self 7→ ‘wait‘.name o 7→ ‘stream‘.name =

false

self 7→ ‘wait‘.name o 7→ ‘connect‘.name

=true → false

self 7→ ‘wait‘.name o 7→ ‘wait‘ → ‘pause‘.name

Figure 5.9: Changing the Name of Operation ‘wait‘ to ‘pause‘ in the Validation Tree for
γ1(wait)

a b A
ζe.p

a ∧ b a ∨ b a ⇒ b a = b ∀x ∈ A : x ∃x ∈ A : x

f f {a, b} {a, b} {a, b} {A, a, b} {A, a, b}
t f {a, b} {b} {a, b} {a, b} {A, b}

f t {a, b} {a} {a, b} {A, a}
∅ {A}

Table 5.2: Cause of Scope Elements for the Boolean Expression Types

5.4 Stage 3: The Cause

In [91] the calculation of the cause for an inconsistency will be published. The cause of
an inconsistency consists of two parts: 1) the cause scope elements (ζe.p) that violate
a constraint 2) the cause expressions (ζǫ) that are violated. In Chapter 4 we already
showed how the cause of scope elements is determined for different Boolean expression
and in Table 5.2 this is summarized shortly. To show how this principle is applied on a
real example we use the validation tree (Figure 5.6) from Section 5.2.

To calculate the cause we need the expected result of the constraint and expressions,
respectively. In Figure 5.11 the same validation tree is shown but instead of showing
the validation result, now the validation result and the expected results are shown (f 7→
false, t 7→ true). Algorithm 4 is used to calculate the cause of an inconsistency. The
process to calculate the cause starts at the root expression of the validation tree (Line 1)
only if the validation tree detects an inconsistency (Line 2).

62



5.4 Stage 3: The Cause

γ1(wait → stop) 7→ Inconsistent

∀

true → false

l ∈ self 7→ ‘wait → stop‘.receiveEvent.covered

∃

true → false

o ∈ l 7→ ‘s‘.represents.type.ownedOperation

=
false

self 7→ ‘wait‘ → ‘stop‘.name o 7→ ‘stream‘.name =

false

self 7→ ‘wait‘ → ‘stop‘.name o 7→ ‘connect‘.name

=
false

self 7→ ‘wait‘ → ‘stop‘.name o 7→ ‘pause‘.name

Figure 5.10: Changing the Name of Message ‘wait‘ to ‘stop‘ in the Validation Tree for
γ1(wait → stop)

The main calculation of the cause starts at the root expression (ǫ0) of the valida-
tion tree (Line 7). If the expression e is a property call expression then the scope
element it refers to will be added to the cause of scope elements (Line 8). Other-
wise it will be checked if the expression’s validation result is not equal to its expected
result and if so, the expression will be added to the cause of expressions and the
CalculateCause(Expression e) algorithm will be recursively called for each argument
of the expression e (Line 10).

ǫ0 in our example is an universal quantifier and if the validated result is not equal to
the expected result the scope element(s) from its source and all scope elements from the
validation of the quantifiers condition must be included in the cause of scope elements
(ζe.p). Furthermore, the expression itself must be included in the cause of expressions
(ζǫ).

ζe.p(γ1(wait)) := {self 7→ ‘wait‘.receiveEvent,

self 7→ ‘wait‘.receiveEvent.covered}

∪ζe.p(ǫ1)

ζǫ(γ1(wait)) := {ǫ0} ∪ ζǫ(ǫ1)

The next step is the cause calculation for the argument of the universal quantifier, the
existential quantifier expression ǫ1. The validated and expected result of that expression
differ, hence the property calls from the quantifier’s source must be added to the cause
of scope elements and the scope elements from all the arguments. The expression ǫ1 will
be added to the cause of expressions too.

63



5. CIM APPROACH

Algorithm 4 Calculating the Cause of an Inconsistency

1 Calcu lateCause ( Val idat ionTree t )
2 i f t−>i n c o n s i s t e n t then

3 Calcu lateCause ( RootExpression o f t )
4 endif

5 end /∗ Calcu lateCause ( Val idat ionTree ) ∗/
6

7 Calcu lateCause ( Express ion e )
8 i f e i sProper ty Ca l lE x pre s s i o n then

9 addToCauseOfScopeElements ( e . p )
10 e l s e i f e . v a l i d a t i o n R e s u l t <> e . expectedResu lt then

11 addToCauseOfExpression ( e )
12 f o r a l l Express ion a in e . arguments
13 Calcu lateCause ( a )
14 endforall

15 endif

16 \end /∗ Calcu lateCause ( Express ion ) ∗/

ζe.p(γ1(wait)) := {self 7→ ‘wait‘.receiveEvent,

self 7→ ‘wait‘.receiveEvent.covered

l 7→ ‘s‘.represents,

l 7→ ‘s‘.represents.type,

l 7→ ‘s‘.represents.type.ownedOperation}

∪ζe.p(ǫ2−1) ∪ ζe.p(ǫ2−2) ∪ ζe.p(ǫ2−3)

ζǫ(γ1(wait)) := {ǫ0, ǫ1} ∪ ζǫ(ǫ2−1) ∪ ζǫ(ǫ2−2) ∪ ζǫ(ǫ2−3)

Next we calculate the cause for the arguments of the existential quantifier expression
— the three equality relations ǫ2−1 to ǫ2−3. All three of them are violated (validated and
expected result are not equal), hence all the scope elements underneath these expressions
must be added to the cause of scope elements as well as all the three equality relation
expression must be added to the cause of expressions. As there are no more children left
in the validation tree, the cause calculation has been finished and the final cause for the
inconsistency is as follows:

ζe.p(γ1(wait)) := {self 7→ ‘wait‘.receiveEvent,

self 7→ ‘wait‘.receiveEvent.covered

l 7→ ‘s‘.represents,

l 7→ ‘s‘.represents.type,

l 7→ ‘s‘.represents.type.ownedOperation,

self 7→ ‘wait‘.name,

64



5.4 Stage 3: The Cause

γ1(wait) 7→ Inconsistent

∀

f/t

l ∈ self 7→ ‘wait‘.receiveEvent.covered

∃

f/t

o ∈ l 7→ ‘s‘.represents.type.ownedOperation

=
f/t

self 7→ ‘wait‘.name o 7→ ‘stream‘.name =

f/t

self 7→ ‘wait‘.name o 7→ ‘connect‘.name

=
f/t

self 7→ ‘wait‘.name o 7→ ‘pause‘.name

Figure 5.11: Validation Tree for γ1(wait) with Expected and Validated Results

o 7→ ‘stream‘.name,

o 7→ ‘connect‘.name,

o 7→ ‘pause‘.name}

∪ζe.p(ǫ2−1) ∪ ζe.p(ǫ2−2) ∪ ζe.p(ǫ2−3)

ζǫ(γ1(wait)) := {ǫ0, ǫ1, ǫ2−1, ǫ2−2, ǫ2−3}

The cause of scope elements in this example is equal to the scope of the constraint
validation but this is not necessarily true for each inconsistency. For that purpose we
take a look at the inconsistency caused by Constraint 2 on the Attribute visible in the
Class Display.

The validation tree shown in Figure 5.12 is a slightly simplified version of the complete
validation tree of Constraint 2 on the Class Display. The simplification affects the
allParents property. This property is a recursive call of the properties generalization

and general on the classes and super classes and due to the increasing complexity this
recursive properties calls are abstracted in the allParents call.

The dashed lines show the parts of the validation tree that can be dismissed due to
the scope reduction. However, based on the scope reduction one of the two remaining
branches that validate to ‘false‘ of the universal quantifier (that iterates over the par-
ent class’ attributes) would be non deterministically removed from the validation tree
(indicated as the dotted lines). To get the complete cause of that inconsistency, it is
necessary to consider both branches of that existential quantifier that validate to ‘false‘
because to repair only one of them is not enough to entirely resolve that inconsistency
(this is shown in Table 5.2). In this example we see that the scope and the cause are
not necessarily the same for all validations.

65



5. CIM APPROACH

γ
2
(D

is
p
la

y
)

7→
I
n

co
n

si
st

en
t

le
tf

/t

:=

a
tt

rN
a
m

es
co

ll
ec

t
p

∈
se

lf
7→

‘D
is

p
la

y
‘.
a
tt

ri
bu

te

o.
n

a
m

e

∀

f
/t

c
∈

se
lf

7→
‘D

is
p
la

y
‘.
a
ll

P
a
re

n
ts

∀

f
/t

p
∈

c
7→

‘W
in

d
ow

‘.
a
tt

ri
bu

te

¬

t/
t

∃

f
/f

s
∈

a
tt

rN
a
m

es

=

f
/f

s
7→

‘v
is

ib
le

‘
p

7→
‘s

iz
eX

‘.
n

a
m

e

¬

t/
t

∃

f
/f

s
∈

a
tt

rN
a
m

es

=

f
/f

s
7→

‘v
is

ib
le

‘
p

7→
‘s

iz
eY

‘.
n

a
m

e

¬

f
/t

∃

t/
f

s
∈

a
tt

rN
a
m

es

=

t/
f

s
7→

‘v
is

ib
le

‘
p

7→
‘v

is
ib

le
‘.
n

a
m

e

∀

t/
t

p
∈

c
7→

‘C
on

tr
ol

le
r‘

.a
tt

ri
bu

te
∀

f
/t

p
∈

c
7→

‘V
is

ib
le

D
ev

ic
e‘

.a
tt

ri
bu

te

¬

f
/t

∃

t/
f

s
∈

a
tt

rN
a
m

es

=

t/
f

s
7→

‘v
is

ib
le

‘
p

7→
‘v

is
ib

le
‘.
n

a
m

e

Figure 5.12: Validation Tree for γ2(Display)

66



5.5 Stage 4: Repairs and Side Effects

The thick lines in the validation tree now show the cause of that inconsistency (the
dotted lines included). As can be seen, all branches of the validation tree, where the
validated and expected result are not equal, are used to determine the scope elements
that cause the inconsistency and all the expressions that are involved in the inconsistency.
The let expression on top of the validation tree (the root expression) has only one
argument that validates to a Boolean result. However, if this validation result is not
equal to the expected result then all the scope elements must be included in the cause
of scope elements in the case of an inconsistency. Therefore, both branches (arguments)
must be used to calculate the cause.

The cause of an inconsistency serves primarily as information to the designer to
visualize a) the model element properties that are involved in an inconsistency, and
b) the expressions of a constraint validation that are violated. This information can
help the designer to identify errors in the model and in the constraint definition itself.
Furthermore, the validation tree representing the cause, i. e., the part of the validation
tree then is the cause and will be used to generate the repairs discussed in the next
section.

5.5 Stage 4: Repairs and Side Effects

The cause of an inconsistency consists of only the model element properties (scope
elements) that are involved in the inconsistency and changing these properties can resolve
an inconsistency. However, nothing is known about how many of these properties must
be changed and how they must be changed — the only thing we know until now is that at
least one of the model element properties must be changed to resolve the inconsistency.
Table 5.3 summarizes which alternatives to resolve an inconsistency exist and how the
repairs must be combined for different Boolean expressions. The basic structure for
generating the repair alternatives is the validation tree and the outcome is a repair tree.

5.5.1 Repair Tree

To illustrate how a repair tree is generated out of the validation tree we use the in-
consistent validation tree illustrated in Figure 5.11 (published in [90]). The process
for generating the repair tree starts at the root expression of the validation tree, the
universal quantifier.

Step 1: An inconsistency that is caused by an universal quantifier can be resolved
by removing the elements (in our example only the Lifeline s is in the source) from the
source or repairing the failed validations of the quantifier’s condition. Figure 5.13 shows

R(γ1(wait)) •
R(ǫp.1)

R(ǫ1)

Figure 5.13: Repair Tree Generation for γ1(wait) — Step 1

67



5. CIM APPROACH

a b A
R

a ∧ b a ∨ b a ⇒ b a = b ∀x ∈ A : x ∃x ∈ A : x

f f {a, b}
R(a)

+
R(b)

R(a)
•

R(b)

〈−, A, a〉
+

〈−, A, b〉
•

R(a) + R(b)

〈+, A, ? 7→ ‘t‘〉
•

R(a)
•

R(b)

t f {a, b} R(b)
R(a)

•
R(b)

〈×, a, ‘f ‘〉
•

〈×, b, ‘t‘〉

〈−, A, b〉
•

R(b)

f t {a, b} R(a)
〈×, a, ‘t‘〉

•
〈×, b, ‘f ‘〉

〈−, A, a〉
•

R(a)
∅ 〈+, A, ? 7→ ‘t‘〉

Table 5.3: Repairing Inconsistencies

R(γ1(wait)) •

•
〈×, self 7→ ‘wait‘.receiveEvent, ?〉

〈−, self 7→ ‘wait‘.receiveEvent.covered, ‘s‘〉

•

R(ǫp.2)

R(ǫ2−1)

R(ǫ2−2)

R(ǫ2−3)

Figure 5.14: Repair Tree Generation for γ1(wait) — Step 2

the repair tree for this first step in the repair tree generation process. The ‘•‘ denotes
the alternative, the upper branch is the removal of the element from the source (ǫp.1) and
the lower branch is representative for the failed validation of the quantifier’s condition
(ǫ1).

Step 2: The repair actions for ǫp.1 and ǫ1 are created, shown in Figure 5.14. ǫp.1 is
a chain of property calls (cf. Section 4.3) where for the last property call in the chain
(self 7→ ‘wait‘.represents.covered) a repair action, for the source of the universal quan-
tifier, is created and in addition an abstract modify repair action for the first property
call in the chain (self 7→ ‘wait‘.represents). The repair for ǫ1 is replaced by the repairs
for the existential quantifier, the alternatives to repair the source (ǫp.2) or repairing the
failed condition validations (ǫ2−1 to ǫ2−3).

Step 3: The repair actions for ǫp.2 and ǫ2−1 to ǫ2−3 are generated (shown in Fig-
ure 5.15). The property call expression for the source of the existential quantifier consists
of a chain of three property calls. In contrast to the universal quantifier no concrete value
could be generated for the element that must be added to the source. But considering

68



5.5 Stage 4: Repairs and Side Effects

R(γ1(wait)) •

•
〈×, self 7→ ‘wait‘.receiveEvent, ?〉

〈−, self 7→ ‘wait‘.receiveEvent.covered, ‘s‘〉

•

•

〈×, l 7→ ‘s‘.represents, ?〉

〈×, l 7→ ‘s‘.represents.type, ?〉

〈+, l 7→ ‘s‘.represents.type.ownedOperation, on 7→ ‘?‘〉

•
〈×, self 7→ ‘wait‘.name, ‘stream‘〉

〈×, o 7→ ‘stream‘.name, ‘wait‘〉

•
〈×, self 7→ ‘wait‘.name, ‘connect‘〉

〈×, o 7→ ‘connect‘.name, ‘wait‘〉

•
〈×, self 7→ ‘wait‘.name, ‘pause‘〉

〈×, o 7→ ‘pause‘.name, ‘wait‘〉

•
〈×, self 7→ ‘wait‘.name, ?〉

〈×, on 7→ ‘?‘.name, ‘wait‘〉

Figure 5.15: Repair Tree Generation for γ1(wait) — Step 3

the expected type for the source (is known from the property call expression) and the
build up of the condition, a concrete value can be generated by simply adding an ele-
ment of the expected type (an Operation in our case) and validating this element on the
quantifiers condition. This additional validation is shown in Figure 5.15 as the branch
drawn as dashed line. The initial value for the added element property is random (or
not given as in the example), hence, the condition will be probably violated (it is not
very likely that the correct name can be guessed, but if so, this value can be taken). If
it is violated, repairs can be generated in the same way as for the normal validations
of the condition and from this repairs a concrete value can be determined. This we
can see in the three repair alternatives generated for the condition validations of the
existential quantifier. Each alternative consists of either renaming the Message name to
the Operation name or renaming the Operation name to the name of the Message. In
the case of missing elements from the existential quantifier, a repair must be taken that
modifies the randomly generated element, the Operation.

Step 4: The final step in the repair tree generation process is the inserting of the
values that are determined from temporary repairs (the one for the element that must
be added), the removal of the temporary repairs and a flattening of the repair tree (the
cascading alternatives and/or combinations) to reduce the depth. Figure 5.16 shows
the complete repair tree for the inconsistency detected in γ1(wait). This repair tree
consists of eleven alternatives to resolve the inconsistency, one repair that removes a
model element, one that adds a model element and nine that modify a model element
property. From the eleven modify repairs, three are abstract (grayed in the repair tree),
i. e., they cannot be executed directly in the model.

69



5. CIM APPROACH

R(γ1(wait)) •

〈×, self 7→ ‘wait‘.receiveEvent, ?〉

〈−, self 7→ ‘wait‘.receiveEvent.covered, ‘s‘〉

〈×, l 7→ ‘s‘.represents, ?〉

〈×, l 7→ ‘s‘.represents.type, ?〉

〈+, l 7→ ‘s‘.represents.type.ownedOperation, on 7→ ‘wait‘〉

〈×, self 7→ ‘wait‘.name, ‘stream‘〉

〈×, o 7→ ‘stream‘.name, ‘wait‘〉

〈×, self 7→ ‘wait‘.name, ‘connect‘〉

〈×, o 7→ ‘connect‘.name, ‘wait‘〉

〈×, self 7→ ‘wait‘.name, ‘pause‘〉

〈×, o 7→ ‘pause‘.name, ‘wait‘〉

Figure 5.16: Complete Repair Tree for γ1(wait)

The repair tree for the inconsistency detected in γ1(wait) consists of alternatives
only. A more complex repair tree is shown for the inconsistency detected in γ2(Display)
in Figure 5.17. The repair tree for this inconsistency consisting of alternatives, combi-
nations and conditional concrete repair actions.

The repair tree starts with two alternatives. These alternatives come from the uni-
versal quantifier. The first alternative is to remove both (the combination) Classes from
the allParents property of the context Class Display. The second alternative is a
combination also, but with more alternatives to combine the second alternative. The al-
ternatives of the first branch of the combinations contains four alternatives, the removal
of the visible Attribute from the Class Window, the removal of the visible Attribute

from the Class Display (indirectly derived from the let expression via the variable
attrNames), the modification of the name property of the visible Attribute from the
Class Display, and the modification of the name property of the visible Attribute

from the Class Window. The two modify repair actions (gray) are conditional concrete
repair actions, where only the name that is not allowed for the attribute names is known.
The second branch of the combination is nearly the same as the first branch except that
the alternatives are for the Class VisibleDevice instead of the Class Window.

The repair tree in Figure 5.17 consists of alternative and combined repair actions,
i. e., the alternative repairs, that can be applied in the model, consist of combinations of
repair actions. To get a flatten tree that consists of alternatives only, the combination
must be applied on its children (similar to multiplying in mathematical arithmetic).
Figure 5.18 shows a simple example how a combination of two branches of alternative
repair actions can be combined.

The repair tree consists of a combination where the two branches that must be com-
bined containing two alternatives. So that the final repair tree contains alternatives on
the top node only, all the possible permutation must be generated, i. e., each alterna-

70



5.5 Stage 4: Repairs and Side Effects

R(γ2(Display)) •

+
〈−, c 7→ ‘Display‘.allParents, ‘W indow‘〉

〈−, c 7→ ‘Display‘.allParents, ‘V isibleDevice‘〉

+

•

〈−, p 7→ ‘W indow‘.attribute, ‘visible‘〉

〈−, s 7→ ‘Display‘.attribute 7→ ‘visible‘.name, ‘visible‘〉

〈×, s 7→ ‘Display‘.attribute 7→ ‘visible‘.name, ? 6= ‘visible‘〉

〈×, p 7→ ‘W indow‘.attribute 7→ ‘visible‘.name, ? 6= ‘visible‘〉

•

〈−, p 7→ ‘V isibleDevice‘.attribute, ‘visible‘〉

〈−, s 7→ ‘Display‘.attribute 7→ ‘visible‘.name, ‘visible‘〉

〈×, s 7→ ‘Display‘.attribute 7→ ‘visible‘.name, ? 6= ‘visible‘〉

〈×, p 7→ ‘V isibleDevice‘.attribute 7→ ‘visible‘.name, ? 6= ‘visible‘〉

Figure 5.17: Repair Tree for γ2(Display)

R +

•
a

b

•
c

d

=⇒ R •

+
a

c

+
a

d

+
b

c

+
b

d

Figure 5.18: Combining Alternative Repair Action

tive from the first combination branch must be combined with the alternatives from the
second combination branch. The result is a repair tree that has only one alternative
node, but as alternatives a combination of single repair actions than can be applied in
the model.

Figure 5.19 shows an excerpt of the flattened repair tree for the inconsistency detected
by γ2(Display), due the large number of 17 alternatives. Some of the alternatives can
be filtered out, if two combined actions change the same scope element (the one with the
dashed lines between the ‘. . . ‘, they would both change the same scope element, actually
in the same way). The flattened repair tree shows one of the major problems resolving
inconsistencies — the exponential explosion of possible repair alternatives. Therefore,
the flattened repair tree is used for the generation of applicable repairs only. But for
presenting the possible solutions to the designer, the preferable style is the original repair
tree (Figure 5.17) as it is more clearly arranged.

Using the knowledge of the used design and modeling language can increase the
number of solutions how to resolve an inconsistency. Unfortunately, this would limit the
general applicability of that approach and therefore it is not intended to provide such a
mechanism in the general approach (will be left open for specific implementations).

71



5. CIM APPROACH

R(γ2(Display)) •

+
〈−, c 7→ ‘Display‘.allParents, ‘W indow‘〉

〈−, c 7→ ‘Display‘.allParents, ‘V isibleDevice‘〉

+
〈−, p 7→ ‘W indow‘.attribute, ‘visible‘〉

〈−, p 7→ ‘V isibleDevice‘.attribute, ‘visible‘〉

+
〈−, p 7→ ‘W indow‘.attribute, ‘visible‘〉

〈−, s 7→ ‘Display‘.attribute 7→ ‘visible‘.name, ‘visible‘〉

+
〈−, p 7→ ‘W indow‘.attribute, ‘visible‘〉

〈×, s 7→ ‘Display‘.attribute 7→ ‘visible‘.name, ? 6= ‘visible‘〉

+
〈−, p 7→ ‘W indow‘.attribute, ‘visible‘〉

〈×, p 7→ ‘V isibleDevice‘.attribute 7→ ‘visible‘.name, ? 6= ‘visible‘〉

+
〈−, s 7→ ‘Display‘.attribute 7→ ‘visible‘.name, ‘visible‘〉

〈−, p 7→ ‘V isibleDevice‘.attribute, ‘visible‘〉

+
. . .
. . .

+
〈×, p 7→ ‘V isibleDevice‘.attribute 7→ ‘visible‘.name, ? 6= ‘visible‘〉

〈×, p 7→ ‘V isibleDevice‘.attribute 7→ ‘visible‘.name, ? 6= ‘visible‘〉

+
. . .
. . .

+
〈×, p‘W indow‘.attribute 7→ ‘visible‘.name, ? 6= ‘visible‘〉

〈×, p 7→ ‘V isibleDevice‘.attribute 7→ ‘visible‘.name, ? 6= ‘visible‘〉

Figure 5.19: Flattened Repair Tree for γ2(Display)

5.5.2 Side Effects

Repairs, or more explicitly, the repair actions of a repair modify properties of model
elements — the scope elements. As already seen before, a scope element can be accessed
more than once during a constraint validation or in other constraint validations than
the one that is violated. From that follows that a repair action (or combinations of
repair actions) might have other effects than the resolution of an inconsistency — the
side effects. Furthermore, side effects are also used to determine contradicting or missing
values for repair actions.

In Figure 5.20 an abstraction of the scopes of the constraint validations is shown.
Some of the scope elements overlap, i. e., they are accessed by more than one constraint
validation. In this figure three validations are shown (val1 - val3) and each validation
accesses properties (p1 - p12) of model elements. Each of the properties provides a value
(px 7→ v). The overlapping scope elements cause side effects if they are changed.

To illustrate how side effects are determined we use the validation trees for γ1(wait)
and γ1(connect) as well as γ3(wait). First, we consider a side effect caused by repairing
γ1(wait). One suggestion to resolve this inconsistency, proposed in the repair tree in

72



5.5 Stage 4: Repairs and Side Effects

px 7→ v
val1 7→ {p1, p2, p3, p6, p7, p8}
val2 7→ {p4, p5, p3, p6, p8}
val3 7→ {p7, p8, p9, p10, p11, p12}

val1

val2

val3
p1

p2

p3

p4

p5

p9

p10

p11

p12

p6

p7

p8

Figure 5.20: Overlaps that Cause Side Effects in Constraint Validations

γ1(wait) 7→ I → C

∀

f → t

l ∈ self . . .

∃

f → t

o ∈ l . . .

. . .

=

f → t

self 7→ ‘wait‘.name o 7→ ‘connect‘ → ‘wait‘.name

. . .

γ1(connect) 7→ C → I

∀

t → f

l ∈ self . . .

∃

t → f

o ∈ l . . .

. . .

f

=

t → f

self 7→ ‘connect‘.name o 7→ ‘connect‘ → ‘wait‘.name

. . .

f

Figure 5.21: Negative Side Effect in Validation Tree γ1(connect)

Figure 5.16, would be the renaming of Operation connect to the name ‘wait‘ (r1 :=
〈×, o 7→ ‘connect‘.name, ‘wait‘〉).

Figure 5.21 shows the two validation trees for γ1(wait) and γ1(connect) with the
effects caused by the proposed repair. Only an excerpt of the complete validation trees
that are affected by the applied repair are shown. The thick lines show the parts that
need re-validation due to the repair. As can be seen, the inconsistency in the left tree
(γ1(wait)) will be resolved as it is mentioned in the repair (I → C, I. . . Inconsistent,
C. . . Consistent). But the same modification causes a new inconsistency (C → I) in
the right validation tree (γ1(connect)) because no Operation named connect exists any-
more in the Class VideoServer. In this case we talk about a negative side effect on
γ1(connect).

S(r1(γ1(wait))) := 〈γ1(connect), n〉

73



5. CIM APPROACH

γ1(wait) 7→ I → C

∀

f → t

l ∈ self . . .

∃

f → t

o ∈ l . . .

. . . . . . =

f → t

self 7→ ‘wait‘.name o 7→ ‘pause‘ → ‘wait‘.name

γ3(pause) 7→ I → C

⇒

f → t

. . . let

f → t

. . . ⇒

f → t

. . . ∃

f → t

o ∈ . . .

. . . . . . =

f → t

o 7→ ‘pause‘ → wait.name self 7→ ‘wait‘

Figure 5.22: Positive Side Effect in Validation Tree γ1(pause)

As the Boolean parts of the validation trees are kept for fast re-validation, the side
effects can be calculated without applying the repair in the model, but instead by sim-
ulating it in the validation tree. If a result of, for example, a model element property is
needed (via a property call expression) and the model element property is not affected
by a repair to test, the value for the needed property will be determined from the model.
But these model element property accesses are strictly read-only for the determination
of the side effects. Thus, the side effects can be calculated very fast. A fast calculation
of the side effects is very important because there exists in average eight possible repairs
per inconsistency ([40]) that must be tested — an exponential growth regarding to model
size.

The side effects of repair actions are not necessarily negative. Instead of applying the
repair containing r1 on to the model we can apply the repair that contains r2 := 〈×o 7→
‘pause‘.name, ‘wait‘〉 on to the model. In this case there is no side effect on the validation
of the constraint γ1 (except the inconsistent one that will be repaired using this repair).
But there is a side effect on the validation of γ3(pause), a constraint validation that is
also violated by the model (for the Transition wait no Operation named ‘wait‘ exists).
Figure 5.22 shows the excerpts of the validation trees of the two constraint validations.
Again, only parts are shown that are affected by the repair action r2. As can be seen,
both inconsistencies can be resolved by applying the repair consisting of r2. In this case
we talk about a positive side effect on γ3(pause).

S(r2(γ1(wait))) := 〈γ3(pause), p〉

Additional to detect effects of a repair on other constraint validations, the side ef-
fects are also used to determine values for repair actions where no direct value can be

74



5.5 Stage 4: Repairs and Side Effects

γ4(V ideoServer) 7→ Inconsistent

⇒

f

. . .
t

¬

f

∃

t

o ∈ self 7→ ‘V ideoServer‘.ownedOperation

=

t

o 7→ ‘pause‘.name ‘pause‘

R(γ4(V ideoServer)) •

. . .

〈−, self 7→ ‘V ideoServer‘.ownedOperation, ‘pause‘〉

〈×, o 7→ ‘pause‘, ? 6= ‘pause‘〉

Figure 5.23: Validation- and Repair Tree for γ4(V ideoServer)

determined, i. e., for all those repair actions that are abstract or conditional concrete
after the repair tree generation process. For illustration we introduce a constraint that
might come from customer requirements that says that there must not be an Operation

pause in the Class VideoServer.

Constraint 4 There must not be Operation pause in the Class VideoServer

17 context Class inv :
18 s e l f . name=’ VideoServer ’ implies

19 not s e l f . ownedOperation−>exists ( o : Operation |
20 o . name=’ pause ’ )

In Constraint 4 the customer requirement is expressed in OCL to be applicable in the
model. This constraint is validated on all Classes, but, due to the implication, only for
the Class VideoServer it is validated, if it does not contain an Operation named ‘pause‘.
As there exists an Operation named ‘pause‘ in the Class VideoServer, the validation on
this Class fails, i. e., an inconsistency has been detected. In Figure 5.23 the validation-
(top) and repair (bottom) for the failed constraint validation and its resolution is shown.
Only the excerpts of the trees are shown that are relevant to illustrate how a missing
value for a repair action can be determined.

Two possibilities to resolve the inconsistency are shown: one is to remove the Oper-

ation named ‘pause‘ from the Class VideoServer, and the second one is to rename

75



5. CIM APPROACH

the Operation pause to something different — a conditional concrete repair action
(r3 := 〈×, o 7→ ‘pause‘, ? 6= ‘pause‘〉). Please note that in this example only one modify
action will be generated because the second argument of the equality relation is a con-
stant that contributes to the cause of expressions only, i. e., no scope element that can
be modified is provided by this expression.

Theoretically an infinite number of solutions exist to resolve the inconsistency using
the conditional concrete repair action because any text combination except ‘pause‘ is
sufficient to resolve this inconsistency. But when we generate the side effects of that
repair action, we get the following list (for simplicity, only already discussed validations
are considered, i. e., γ1(pause) and γ3(pause)):

S1(r3(γ4(V ideoServer))) := 〈γ1(pause), u〉

S2(r3(γ4(V ideoServer))) := 〈γ3(pause), u〉

The two side effects generated for the repair action r3(γ4(V ideoServer)) are unknown
because no concrete value exists, that can be tested on the affected constraint validations.
But the two affected constraint validations detect other inconsistencies that must be
resolved, i. e., for these inconsistencies repairs exist. In contrast to r3(γ4(V ideoServer)),
the repair actions from the other two inconsistencies provide a single value for that
particular scope element, the name property from the Operation named ‘pause‘ from
Class VideoServer. Hence, the value provided by these repairs (‘wait‘) can be taken for
r3(γ4(V ideoServer)) as one possible solution for this inconsistency. To ensure, whether
the provided value is able to resolve the inconsistency, the side effects are generated
for this repair. Therefore, one repair can be determined that is able to resolve three
inconsistencies.

r3(γ4(V ideoServer)) := 〈×, o 7→ ‘pause‘, ‘wait‘〉

An abstract or conditional concrete repair action might not only have side effects on
other constraint validations that cause inconsistencies, but also on constraint validations
that are not violated by the model. In such cases a possible contradiction in the con-
straint set is detected, as there is a value for a model element property that satisfies one
constraint but violates another one. To indicate contradictions in the set of constraints
the cause of expressions is used, i. e., if a possible contradiction has been detected, the
solution for the inconsistencies might be in the constraints and not in the model alone.
This is the case if Line 20 of Constraint 4 would be o.name=’wait’. ‘wait‘ is the only
value for the repair actions that modify the Operation name but this is not allowed
because Constraint 4 (there must not be Operation pause in the Class VideoServer)
would be violated. As a consequence the modifications of the Operation names can be
excluded from the list of alternative repairs. Fortunately, other repairs exists that resolve
the inconsistency but if not, changing one of the constraints would be the only solution.

76



5.6 Summary

5.6 Summary

In this chapter the CiM approach was introduced. It is based on the principles intro-
duced in the last chapter. The CiM approach provides the functionality to 1) define
arbitrary constraints, 2) detect violations (inconsistencies) in the set of constraint, 3)
generates repair alternatives based on constraint validations only (independent of the
used design and modeling language), and provides information about the consequences
(side effects) of the proposed repairs on other constraint validations. Furthermore, the
CiM approach supports the designer in locating inconsistencies in the model using the
cause of scope elements as well as in the set of constraints using the cause of expressions.

77



5. CIM APPROACH

78



Chapter 6

Tool Implementation

“Things do not happen. Things are made to happen.”
John F. Kennedy, American President, 1917-1963

To evaluate the working of the CiM approach a prototype tool was implemented. An
early version of the prototype that already provides the main functionality was presented
in [89]. The tool is implemented as an eclipse based plug-in for the IBM Rational
Software Modeler using UML as modeling language and OCL as constraint language
and can be downloaded from the institutes web site http://www.sea.jku.at/tools.

6.1 IBM Rational Software Architect Integration

The CiM approach implementation is set of plug-ins for the eclipse based modeling tool
IBM Rational Software Architect (RSA). It provides additional views and editors to
define and visualize the constraints as well as the detailed representation in the form
of the validation tree. Figure 6.1 gives an overview of a typical configuration of a RSA
workbench.

The top left window shows the diagrams of the software model. In this case the model
containing the class, sequence and state machine diagram from our example is shown.
Top right all the constraint definitions and their validations are shown. In the tool, red
flags indicate an inconsistency and the green flags consistent validations. The lower two
windows are views that show the validation tree for Constraint 2 validated for the Class

Display (left) and the repair tree for this inconsistency on the right. Furthermore, the
tool provides views to visualize the syntactical structure of a constraint (similar to the
validation tree, but with validation results), and to visualize the dependencies of a scope
element, i. e., what other constraint validations access a scope element. The arrangement
and size of the views can be customized to the designers needs — as in any eclipse based
application.

79

http://www.sea.jku.at/tools


6. TOOL IMPLEMENTATION

Figure 6.1: Overview of the CiM Approach Implementation for the IBM Rational Software
Architect

80

Images/CoMaAnalyzerOverview.eps


6.2 Constraints

Figure 6.2: Constraint View

6.2 Constraints

The view for the constraints plays an essential role in the tool because in this view
constraints can be added, deleted and modified, as well as the graphical visualizations
(syntax-, validation, and repair trees) can be selected. For that purpose a separate view
exists (Figure 6.2). This view is split into two parts: the left side lists all the constraints
defined in the model and the right side shows the details for the item selected on the
left side. Furthermore, the right side is organized tree based, i. e., below the constraint
definition the instances (the validation) of those constraints can be found and below one
validation the scope, as well as repairs with their side effects, in case of an inconsistent
validation, is shown.

When a constraint is selected, on the right side the details for the constraint definition
are show. The constraint definition consists of a name (e. g., Constraint 01), a brief
description, a formal definition in OCL, as well as some control flags, for example, to
enable a constraint (if not enabled, the constraint will not be validated on the model)
and other flags that are mainly for debugging and testing purposes.

Below the constraint definition all the validations for the constraint are listed. The
validation result of the constraint validation is indicated as a flag — green for consistent
and red for inconsistent. Furthermore, a border around the flag indicates if the constraint
validation was affected by a model change, i. e., if the model is changed the flags (green
and red) of the constraint validations get a border around, if they were re-validated,

81

Images/ConstraintView.eps


6. TOOL IMPLEMENTATION

independent whether they change their result or not. The flag follows the name of the
constraint and the context element (in square brackets) on which the constraint has
been validated. The details of a constraint validation show the context element and the
validation result.

During a constraint validation model element properties are accessed — scope el-
ements. These scope elements are indicated by an eye symbol and are shown below
a constraint validation. Next to the symbol, the type of the model element is shown,
followed (in brackets) by the instance name of the model element and the property
(separated by a dot). The details of a scope element show the concrete model element
instance, the property and the value for that property. The scope elements can be high-
lighted in the model using the context menu of the scope elements (more than one scope
element can be selected). In the case of an inconsistency, the scope is equal to the cause
of scope elements.

If a constraint validation fails (inconsistent), the executable repairs are shown below
the constraint validation. For each alternative repair a separate item is shown and if an
alternative consists of more than one repair action, the repair actions are concatenated
by a comma. Below the repair alternatives the side effects of that repair are listed.

On top of the constraint view, behind the four icons the functions to add a constraint,
to load constraints from a file (replaces the defined), to append constraints to the existing
ones from a file or to store the list of constraint to a file provided. In the preferences
of the tool, a file containing constraints can be defined that will be loaded on program
start.

To add a constraint or to edit a constraint (context menu of the constraint definition)
a separate editor exists. Figure 6.3 shows this editor window. First, a name and a
description can be defined for a constraint. In the large text box in the center of the editor
the formal definition of the constraint is given. This text box provides syntax highlighting
and code completion for OCL. Below this text box, the context for the constraint is
defined, i. e., for which type of model element the constraint must be validated (the
context definition is slightly different as for standard OCL environments). The four check
boxes below the context definition are use to control the validation of the constraint.

The first check box is used to enable the constraint, i. e., if it should be validated in
the model. The second check box is used to enable the reasoning engine that provides
the proposed functionality (ARL — Abstract Rule Language, the internally used rep-
resentation of the constraint validations, i. e., validation tree,. . . ). Otherwise the OCL
environment from eclipse is used. In the case ARL is not used, no repairs are enabled
and the re-validation process is restricted. Disabling ARL is only used for evaluation
purposes to ensure, if the self-made reasoner is working correctly. The third check box
is used to keep the validation tree to achieve a better performance. Disabling this check
box reduces the used memory, but the re-validation time will increase. The last check
box indicates a repairable constraint, i. e., if repairs should be generated, if this con-
straint is violated. The deletion of a constraint from the set of constraint is done using
the context menu of the constraint definition.

82



6.3 Graphical Visualization

Figure 6.3: Constraint Editor

Additional to these combined view for constraint definitions and their validation
outcomes, separate views exists that enable the visualization of all constraint validations
(not grouped by the constraint definitions) and all scope elements collected from all
constraint validations.

6.3 Graphical Visualization

As mentioned before, internally a specialized reasoner for OCL is implemented to provide
the functionality of the CiM approach. This reasoner is based on the validation tree
— the basic data structure for our approach. This data structure is represented in the
Abstract Rule Language (ARL) that is based on first order predicate logic and can be
extended with specialized functions provided by the used constraint language, like, for
example, the select or collect functions from OCL. The designer is able to select the
appropriate views out of the constraint and constraint validations.

In Figure 6.4 the validation tree for the inconsistency caused by γ2(Display) (Con-
straint 2 validated on the Class Display) is shown. The top node of the validation tree
represent the constraint validation. The left branch points to the constraint definition
and the lower branch to the context element. As can be seen, the structure of the real
validation tree is slightly more complex than explained in the approach. This stems
from two facts: Firstly, the allParents property is a recursive call of the properties
generalization and general on the context class and all its super classes. Secondly,

83

Images/ConstraintDefinition.eps


6. TOOL IMPLEMENTATION

Figure 6.4: Validation Tree View

the set of Boolean operations is limited to a negation, conjunction and the universal
quantifier and therefore all other Boolean operations are derived from these basic oper-
ations. This comes with the advantage that the generation of the scope, cause and the
repairs is very similar for all the derived operations (explained in Chapter 4), hence the
functionality has to be implemented only once for the Boolean operations — this elimi-
nates code duplication and therefore reduces the potential of making errors. It enables
also an easier porting on different application platforms.

The coloring of the nodes representing Boolean expressions indicates their validation
result — red for ‘false‘ and green for ‘true‘. The branches of the tree are attached with the
validation result they propagate to the parent. Boolean results for Boolean expressions
as well as text results and model elements returned from property calls. The Boolean
nodes in the validation also reflect the cause of expressions in case of an inconsistent
validation.

Aside the validation tree, the syntax tree reflects the syntactical structure of a con-
straint definition. The syntax tree can be selected from the context menu of the con-
straint definition. Furthermore, a view exists to visualize the scope tree to show the
dependencies of the scope elements, i. e., where a scope element is accessed and causes a

84

Images/ValidationTree.eps


6.3 Graphical Visualization

Figure 6.5: Repair Tree View

side effect. It shows the parts of the constraint validations where they are accessed and
what re-validation a modification of the scope element might trigger. This view can be
selected from the context menu of a validated constraint.

Another view is the repair tree that can be selected from the context menu of a
constraint validation that indicates an inconsistency. Figure 6.5 shows an excerpt of
the repair tree for the inconsistency caused by γ2(Display). The main reason why the
repair tree consist of many more alternatives as explained in Chapter 5 is because of
the allParents property. In the approach section it was assumed that this is a single
property that provides all parents (super classes) of the context class. But in UML the
allParents property is a recursive call of the generalization and general properties
of the context class and all its parents (also expressed in the validation tree). Hence,
there exist many more possibilities to resolve this inconsistency because not only the
classes can be removed, but also each of the generalizations can be removed.

The top node of the repair tree represents the constraint validation it belongs to.
Below that node the root node of the repair tree is shown (indicated using the square
brackets around the node type). The alternatives are indicated using an asterisk (*) and
the combinations are indicated using a plus (+). The notation of the repair actions is
taken from the formal notations introduced in this thesis. Out of this repair tree, the
proposed repairs in the constraint view are generated.

The views can be selected from the context menu of the corresponding element in
the view for the constraints, i. e., in the context of the constraint the syntax tree can be
found, in the context of the constraint validations the validation and, if applicable, the
repair tree, and finally in the context of a scope element the scope tree.

85

Images/RepairTree.eps


6. TOOL IMPLEMENTATION

6.4 Summary

In this chapter a brief overview about the prototype implementation for the CiM ap-
proach is given. It has been shown how the proposed functionality of the approach is
realized and presented to the designer as well as how the designer can interact with the
system regarding the definition of arbitrary constraints. This prototype is the basis for
the evaluations shown in the next chapter.

86



Chapter 7

Evaluation and Discussion

“No amount of experimentation can ever prove me right; a single exper-
iment can prove me wrong.”
Albert Einstein, German Physicist, 1897-1955

In this chapter the CiM approach is evaluated using the prototype tool introduced
in the last chapter. It will be shown how the three research questions are answered and
what the limitations of our approach are.

7.1 Generic Applicability — RQ 1

In the following we will answer research question 1, how models and constraints can be
generalized to become applicable for managing the consistency in a broad applications
scope. It is informally explained how the proposed approach is applicable to a broad
scope of applications. The question is answered using applications that actually use
(parts) of the proposed approach or work that is currently in progress using our approach.

7.1.1 Design Language

One major concern that we have throughout this thesis is to keep the approach as general
as possible. This refers to the used design and modeling language (i. e., the language
in which a model, that should be kept consistent, is expressed) and the used constraint
language (i. e., the language that is used to express the constraints that define a consistent
state of the system). Most state-of-art approaches are limited to one particular design
and modeling language and/or constraint language. Nentwich et al. presented the
xLinkIt approach [73] that is general applicable on XML documents. However, the
limitation to XML documents itself is a restriction on the used design language, even
though nowadays many models can be expressed as XML documents.

Since we can apply Definition 1 to UML diagrams, this definition can be applied to
various different design and modeling languages. For example, to Entity Relationship
(ER) models [25] known from database systems. The elements in these model are Entities

87



7. EVALUATION AND DISCUSSION

and Relationships. The entities are connected via relationships and can have attributes,
the properties of these elements.

Aside database systems, product lines are also able to be expressed in this notation.
A case study [107, 108] is already made for the Dopler (Decision-Oriented Product Line
Engineering for effective Reuse) tool suite [35], a decision oriented model environment
for software product lines. This tool is now used in productive work.

The approach presented in this work is also used in environments where the meta-
model can be evolved [34], i. e., the constraints against the model are validated (explained
in the next section), are defined generic and the concrete form of this constraints depends
on the meta-model definition. So, this enables a variable definition of the meta-model
syntax for the applicability of the proposed approach in this work.

Aside from modeling languages, our definition of a model can also be applied to
programming languages like Java, which are very similar to the UML class diagrams.
Java classes are elements that contain attributes and operations. Both, attributes and
operations can be elements or attributes. The approach presented in this work is also
applied to validate constraints on running Java programs.

Actually the proposed approach is also used in the mechatronics domain [64], where
the consistency of interrelated documents is managed. The sources for the documents are
spreadsheets (e. g., MS Excel), CAD drawings (e. g., ProEngineer) and calculations from,
for example, MathLab. The proposed approach is used to determine the consistency, if
the calculations done in Excel correspond to the dimensions used in the drawings. If,
for example, the calculated dimensions and number of screws of a flange corresponds in
the drawings.

Unfortunately, a formal proof that our definition of a model is applicable on every
kind of design and modeling language cannot be made as there exist many modeling
languages, but we believe, based on our experience with the mentioned projects ([107,
108], [34], that this definition is applicable to most of the commonly used modeling
languages.

7.1.2 Constraint Language

Definition 2 defines a general representation of a constraint. The context can be any
element type specified by the domain language, e. g., the model language UML, the
Dopler meta-model [107, 108], the Java programming language, etc. Furthermore, the
condition can be expressed in any form as long as it can deal with the design language
and validates to a Boolean value. The condition a constraint must fulfill is that the
validation can be represented in a tree based form.

The ModelAnalyzer approach by Egyed [39] uses hard coded C# or Java con-
straints. Later, this approach was extended to use OCL as constraint language [51].
Vierhauser et al. [108] use Java only and Demuth et al. [34] use a constraint language
that is based on OCL. Actually, most of the applications of the approach use OCL like
constraints ([34], [64]) or Java constraints ([108]). As there already exist works asides
UML and OCL that uses this technology, research question RQ 1 was answered with the
limitations shown in Section 7.4.1.

88



7.2 Correctness and Appropriateness — RQ 2

7.2 Correctness and Appropriateness — RQ 2

The second research question addresses the problem, if it is possible to generate appro-
priate and directly executable repair alternatives for detected inconsistencies without
loosing the general applicability of the approach. To answer this question first the cor-
rectness of the detected inconsistencies must be ensured.

7.2.1 Correct Inconsistency Detection

The correctness of the detected results is evaluated using the tool implementation for
UML and OCL. Parallel to the reasoner that is based on the proposed approach (CiM ),
the OCL constraints are validated using the OCL environment provided by the Eclipse
MDT environment. Used for the evaluation are the OCL constraints introduced in
Chapter 2 and listed in Appendix A. The constraints are applied on the UML models
listed in Table 7.1. The first column of Table 7.1 shows the number of the model and
the second column the name of the model (some models must be anonymized). From
the third to the sixth column are the size of the model (number of model elements),
the number of scope elements and the number of total constraint validations listed. In
the brackets next to the constraint validations the detected inconsistencies are listed.
For all cases the number of the detected inconsistencies and consistencies was equal
for the MDT OCL validation and the CiM approach implementation. Therefore, the
inconsistency detection is working correctly.

7.2.2 Correct Scope for Re-Validation

The scope of a constraint must be complete and minimal to be considered correct.
Minimal means that there is no scope element in the scope of a constraint validation
where not at least one value exists that causes a change of the overall validation result
or changes the scope of the constraint validation.

∀e.p ∈ S(γ(x))|(∃e.p.σ′|(e.p.σ 6= e.p.σ′ ∧ (γ(x) 6= γ(x)′ ∨ S(x) 6= S(x)′)) (7.1)

Complete means that their does not exist a model element property in the model
whose modification has an influence on the overall validation result of the constraint
validation. It does not imply that a modification of a model element property that is
not in the scope would make a constraint validation obsolete (e. g., the deletion of the
context element ⇒ deletion of the constraint validation).

∄e ∈ M |(e.p.σ 6= e.p.σ′ ∧ ∃x ∈ M |(e.p /∈ S(γ(x)) ∧ γ(x) 6= γ(x)′)) (7.2)

In Chapter 4 we showed that the first-order logic expressions can be expressed with
only three expression types: the conjunction (∧), negation (¬) and the universal quanti-
fier (∀). Thus, we prove the minimality property (7.1) and completeness property (7.2)
on the three expression types. We proof the correctness based on case distinctions. We
distinguish four different cases to proof the correctness of the scope calculations. The

89



7. EVALUATION AND DISCUSSION

Nr Name #Model Elements #Scope Elements #Constr. Val. (I)

1 Video on Demand 90 127 63 (7)

2 ATM 220 763 304 (64)

3 Microwave Oven 290 296 138 (24)

4 Model View Controller 418 834 393 (74)

5 eBullition 513 892 341 (76)

6 Curriculum 763 1,350 595 (95)

7 Teleoperated Robot 1,115 1,969 885 (86)

8 Dice 3 1,274 1,649 599 (150)

9 ANTS Visualizer 1,282 3,119 1,225 (235)

10 Inventory and Sales 1,296 1,898 803 (134)

11 Course Registration 1,406 1,822 712 (159)

12 UML IOC F05a T12 1,453 2,441 998 (314)

13 VOD 3 1,558 4,652 1,789 (259)

14 Vacation and Sick Leave 1,658 2,681 1,084 (246)

15 Home Appliance 1,707 2,115 754 (157)

16 HDCP Defect Seeding 1,784 2,199 985 (171)

17 DESI 2.3 1,974 4,727 1,838 (373)

18 iTalks 2,212 4,049 2,289 (289)

19 Hotel Management Sys. 2,583 4,244 2,033 (564)

20 Biter Robocup 2,632 6,265 2,334 (476)

21 Calendarium 2,809 6,160 2,694 (708)

22 UML LCA F03a T1 2,983 2,912 1,243 (317)

23 <unnamed> 5,373 6,804 2,906 (872)

24 NPI 7,110 8,536 2,930 (1,192)

25 Word Pad 8,078 17,907 8,186 (1,557)

26 dSpace 3.2 8,761 12,994 5,869 (1,371)

27 OODT 9,828 26,650 11,384 (2,590)

28 Insurance Network Fees 16,255 27,442 10,562 (3,250)

29 <unnamed> 33,347 33,844 16,627 (3,609)

30 <unnamed> 64,061 67,723 40,297 (4,305)

Table 7.1: List of Models Used in the Evaluation

proofs for the negation are omitted for case 2 to 4 because the proofs would be the same
as for case 1.

Case 1:

M := {a, b}, a := false, b := false : S(a ∧ b) := {a} or {b}

: S(¬a) := {a}

: S(∀x ∈ M |x) := {M, a} or {M, b}

Proof. 7.1:

S(a ∧ b) := {a}, a′ := true : S(a ∧ b)′ := {a} → {b}

S(a ∧ b) := {b}, b′ := true : S(a ∧ b)′ := {b} → {a}

90



7.2 Correctness and Appropriateness — RQ 2

S(¬a) := {a}, a′ := true : S(¬a′) := {a}, γ(¬a′) := true → false

S(∀x ∈ M |x) := {M, a}, a′ := true : S(∀x ∈ M |x)′ := {M, a} → {M, b}

S(∀x ∈ M |x) := {M, b}, b′ := true : S(∀x ∈ M |x)′ := {M, b} → {M, a}

Proof. 7.2:

S(a ∧ b) := {a}, b′ := true : S(a ∧ b) = S(a ∧ b′), γ(a ∧ b) = γ(a ∧ b′)

S(a ∧ b) := {b}, a′ := true : S(a ∧ b) = S(a′ ∧ b), γ(a ∧ b) = γ(a′ ∧ b)′

S(¬a) := {a}, b′ := true : S(¬a) = S(¬a), γ(¬a) = γ(¬a′)

S(∀x ∈ M |x) := {M, a}, b′ := true : S(∀x ∈ M |x) = S(∀x ∈ M |x)′,

γ(∀x ∈ M |x) = γ(∀x ∈ M |x)′

S(∀x ∈ M |x) := {M, b}, a′ := true : S(∀x ∈ M |x) = S(∀x ∈ M |x)′,

γ(∀x ∈ M |x) = γ(∀x ∈ M |x)′

Case 2:

M := {a, b}, a := true, b := false : S(a ∧ b) := {b}

: S(∀x ∈ M |x) := {M, b}

Proof. 7.1:

S(a ∧ b) := {b}, b′ := true : S(a ∧ b′) := {b} → {a, b},

γ(a ∧ b)′ = false → true

S(∀x ∈ M |x) := {M, b}, b′ := true : S(∀x ∈ M |x)′ := {M, b} → {M, a, b},

γ(∀x ∈ M |x)′ = false → true

Proof. 7.2:

S(a ∧ b) := {b}, a′ := false : S(a ∧ b) = S(a ∧ b)′, γ(a ∧ b) = γ(a ∧ b)′

S(∀x ∈ M |x) := {M, b}, a′ := false : S(∀x ∈ M |x) = S(∀x ∈ M |x)′,

γ(∀x ∈ M |x) = γ(∀x ∈ M |x)′

Case 3:

M := {a, b}, a := false, b := true : S(a ∧ b) := {a}

: S(∀x ∈ M |x) := {M, a}

91



7. EVALUATION AND DISCUSSION

Proof. 7.1:

S(a ∧ b) := {a}, a′ := true : S(a ∧ b)′ := {a} → {a, b},

2γ(a ∧ b)′ = false → true

S(∀x ∈ M |x) := {M, a}, a′ := true : S(∀x ∈ M |x)′ := {M, a} → {M, a, b},

γ(∀x ∈ M |x)′ = false → true

Proof. 7.2:

S(a ∧ b) := {a}, b′ := false : S(a ∧ b) = S(a ∧ b)′, γ(a ∧ b) = γ(a ∧ b)′

S(∀x ∈ M |x) := {M, a}, b′ := false : S(∀x ∈ M |x) = S(∀x ∈ M |x)′,

γ(∀x ∈ M |x) = γ(∀x ∈ M |x)′

Case 4:

M := {a, b, c}, A := {a, b}, a := true, b := true : S(a ∧ b) := {a, b}

: S(∀x ∈ A|x) := {A, a, b}

Proof. 7.1:

S(a ∧ b) := {a, b}, a′ := false : S(a ∧ b)′ := {a, b} → {a},

γ(a ∧ b)′ = true → false

S(a ∧ b) := {a, b}, b′ := false : S(a ∧ b)′ := {a, b} → {b},

γ(a ∧ b)′ = true → false

S(∀x ∈ A|x) := {A, a, b}, a′ := false : S(∀x ∈ A|x)′ := {A, a, b} → {A, a},

γ(∀x ∈ A|x)′ = true → false

S(∀x ∈ A|x) := {A, a, b}, b′ := false : S(∀x ∈ A|x)′ := {A, a, b} → {A, b},

γ(∀x ∈ A|x)′ = true → false

Proof. 7.2:

S(a ∧ b) := {a, b}, c → c′ : S(a ∧ b) = S(a ∧ b)′, γ(a ∧ b) = γ(a ∧ b)′

S(∀x ∈ A|x) := {M, a, b}, c → c′ : S(∀x ∈ A|x) = S(∀x ∈ A|x)′,

γ(∀x ∈ A|x) = γ(∀x ∈ A|x)′

92



7.2 Correctness and Appropriateness — RQ 2

7.2.3 Correct Cause Calculation

For correctness, calculated causes must be complete in that they identify all elements
that cause the inconsistency and minimal in the sense that they do not contain any
elements that do not cause the inconsistency.

For the proof of correctness, we can make the following assumptions which are true
for commonly used modeling languages and constraints: 1) the constraint is well formed
(i. e., syntactically correct), 2) the constraint starts its evaluation always at the context
element provided, and 3) all model elements accessed during that rule’s evaluation must
be reached by navigating from this context element (i. e., there must not exists any
“floating” model parts that are not connected to other parts but are accessible). All
constraints we encountered to date satisfy these conditions.

Algorithm 4 in Section 5.4 computes two causes: the expressions of the rule validation
that cause inconsistencies (line 10) and the model element properties that contribute
to this cause (line 8). The model element properties are these parts that cause an
inconsistency and that can be changed by the designer. Therefore, each model element
property that is in the cause of model element properties must be accessed by at least
one expression that is in the cause of expressions, i. e., an expression that is in the cause
of expression must have an expression that accesses the model element property in its
arguments.

∃e.p ∈ ζe.p, ∃ǫ ∈ ζǫ|ǫe.p ∈ ǫ.α

The cause of expressions contains all expressions from inconsistent constraint vali-
dations where the validation result differs the expected result. These expressions are
the basis for the cause of model element properties because only those model element
properties are included in the cause of model element properties that are accessed by
expressions where the validated result differs the expected result. Therefore, it is enough
to prove that the cause of expressions is correct.

ζǫ → correct ⇒ ζe.p → correct

To show that the cause of expression is complete and minimal (i. e., is correct) we
use an abstract example of constraint validation that is inconsistent shown in Figure 7.1.
The top diamond node represents the inconsistent constraint validation. Beneath this
node the oval nodes represent the Boolean expressions of the validation tree. In the
nodes the result of the expression is shown. Instead of ‘true‘ and ‘false‘ the result of the
comparison of the expected and the validation result is show, i. e., ‘fail‘ means that the
validated result differs the expected result and ‘succeed‘ means that the validated result
equals the expected result.

We distinguish three different cases in a constraint validation that detects an incon-
sistency: a) there is a continuous path of Boolean expressions that fail, b) one Boolean
expression validation in the path to the leaves succeeds and c) all Boolean expressions

93



7. EVALUATION AND DISCUSSION

Inconsistency

fail

fail

fail

e.p1

a)

succeed

fail

e.p2

b)

succeed

succeed

e.p3

c)

Figure 7.1: Combinations of Expression Validations in an Inconsistent Validation Tree

below a failed expressions succeed. A Boolean expression is in the cause of expressions
if the validated result differs the expected result (fail) and if its parent is in the cause
of expressions (a recursive condition up to the root expression that the validated and
expected result of its parent expression differ too). The only exception is the root ex-
pression because it has no parent but the root expression expresses the overall validation
result of the constraint validation: ‘true‘ for consistency (the expected result) and ‘false‘
for inconsistency.

Case a) of Figure 7.1 shows a continuous path of expression that fail (the validated
and expected result differ) and therefore these expression must be in the cause of expres-
sions of an inconsistency. The leaves of a validation tree are the expressions that access
model elements or are constants of a constraint condition. Thus, the leaves of a contin-
uous path of expressions that fail must be in the cause of model element properties in
the case of a model element property access. Therefore, at least one Boolean expression
that fails is a parent of the expressions that access a model element property that is in
the cause of model element properties.

On the other hand, case b) illustrated in Figure 7.1 shows a validation path where
an Boolean expression that fails is a parent of an expression that accesses a model
element property but both are not in the cause of expressions or cause of model element
properties. The overall validation result of the inconsistency cannot change due to a
change of this model element property because one of the expressions in the path to the
root expressions (parents) validates to the expected result. The algorithm to calculate
the cause is strictly top-down starting at the root expression and therefore it stops, when
the first expression is detected that succeeds.

Case c) shows the case where all expression validate to their expected result and
thus these validation can not cause the inconsistency at all. Our algorithm to calculate
the cause applied to a consistent validation will generate an empty cause because in a
constraint validation that does not detect an inconsistency, only the cases b) and c) can
occur.

94



7.2 Correctness and Appropriateness — RQ 2

Please note that there may be very well some model element properties in the cause of
an inconsistency that occur in branches that are not in the cause of expressions because
a model element property can be accessed in more than one location of a constraint
validation. This would be the case if, for example, in Figure 7.1 all three model element
accesses would be the same (e.p1 = e.p2 = e.p3). Due to case a) the model element
property would be in the cause. But because of the strict top-down navigation in the
validation tree (from expression to model element properties and not from model element
properties to the expressions) for generating the cause, it is guaranteed that the accessed
model element properties from the cause can be uniquely associated to the detected
inconsistency.

7.2.4 Appropriateness of the Generated Repairs

The repairs are generated out of the cause of expressions and cause of scope elements,
which we already have shown that they are correct. We evaluated empirically if the
generated repairs are appropriate, i. e., if they are applicable on the models used in the
evaluations.

We evaluated how many repairs can be generated and how many of them are concrete.
Table 7.2 shows the number of repairs that are generated for each model. The first
column shows the model number (referencing to Table 7.1), the second and third column
the number of abstract and concrete repairs generated directly out of the validation
tree, the fourth and fifth column the repairs after considering the side effects and the
last column the improvements due to the consideration of the side effect. The number
of improvements is very low. This is because of the use of very small constraints that
contain nearly no negations that could improve this result. For the largest model it
was not possible to generate repairs, due to memory limitations which are discussed in
Section 7.4). Please note that the total number of repairs is not necessarily the same
after considering the side effects, because for some abstract or concrete repairs more
possible concrete repairs can be generated, or some of them might cause unwanted side
effect so they are removed. All concrete repairs can be applied in the model and are able
to resolve the inconsistencies. This was proven by executing the repair in the model and
observing if the inconsistency was resolved.

We also evaluated how many repair actions a repair contains and in our evaluations
we encountered that each repair consists of one repair action only. This stems from the
small constraints used in our evaluation. Furthermore, we evaluated how many repairs
are generated for each detected inconsistency. In Figure 7.2 the number of repairs per
inconsistency depending of the model size is shown. As we can see, the number of
repairs generated per inconsistency remains stable between two and twelve repairs (on
average eight). Moreover, we split up the repairs in the three types of repair actions.
The total number of these repairs is also shown in Figure 7.2. In contrast to the repairs
per inconsistency, the total number of repairs increases with the size of the model.
The number of repairs for each repair action type increases nearly constant and the
distribution is nearly the same for all evaluated models. Most of the repairs are modify
and delete actions (approximately ten times more than add repairs).

95



7. EVALUATION AND DISCUSSION

Nr Direct [#Repairs] Side Effect [#Repairs] Improvement [%]
Abstract Concrete Abstract Concrete

1 27 45 27 45 0.0

2 201 138 192 147 6.5

3 183 261 183 261 0.0

4 297 816 297 816 0.0

5 405 1,356 405 1,368 0.9

6 600 1,485 600 1,488 0.2

7 351 390 351 390 0.0

8 1,140 2,133 1,119 2,250 5.5

9 735 1,353 729 1,377 1.8

10 981 4,530 969 4,740 4.6

11 1,515 4,680 1,353 6,018 28.6

12 1,335 1,818 1,329 1,830 0.7

13 579 1,677 579 1677 0.0

14 2,196 3,012 2,196 3,192 6.0

15 972 4,782 972 4,782 0.0

16 108 732 108 732 0.0

17 600 2,553 600 2,553 0.0

18 2,373 12,534 2,343 12,669 1.1

19 3,351 5,931 3,324 6,261 5.6

20 4,614 4,434 4,383 5,064 14.2

21 1,134 3,561 1,134 3,561 0.0

22 3,747 6,396 3,474 6,396 0.0

23 1,707 1,002 1,707 1,170 16.8

24 7,038 5,037 7,038 5,037 0.0

25 2,880 1,761 2,880 1,761 0.0

26 111 393 111 393 0.0

27 765 2,721 765 2,721 0.0

28 15,987 33,369 15,957 33,789 1.3

29 29,625 73,056 29,619 73,068 1.1

30 N.A. out of memory

Table 7.2: Abstract and Concrete Repairs Generated

In Figure 7.3 the average number of repairs depending on the validation tree size is
shown. The size of the validation tree corresponds to the number of nodes (expression)
in the validation tree. For the evaluation the average number of nodes for each constraint
validation is taken. Each plot in the diagram is the average number of repairs generated
for a constraint definition. Only those constraints are shown and taken for the calcula-
tion of average number of nodes and repairs. As can be seen the number of generated
repairs slightly increases depending on the validation tree size. However, a complex and
large validation tree does not imply the generation of a large number of repairs as can
be seen in Constraint 1 (C01). On average for all constraints the average number of
generated repairs is between 1 and 13, hence, at least one repair for each inconsistency
was generated and can be executed in the model to resolve the inconsistency. Therefore,
research question RQ 2 was answered.

96



7.3 Performance and Scalability — RQ 3

100

101

102

103

104

105

102 103 104 105

Model Size [#Elements]

#
R

ep
ai

rs

+

+ + +
+

+
+

+

+

+

++
++

+++

+

+
+

+

+

+

+

+

+ add

|

|

|

| | |
|

|
|

||

|||
||

|
|
|
||
|

|

| |
| |

|

|

| delete

×

×
×

×

× ×

×

×

×

××

×

×

×
×

×

×

×

×
×

×

×

×

×

×
××

×

×

× modify

⊕

⊕

⊕ ⊕

⊕ ⊕

⊕

⊕

⊕

⊕⊕

⊕
⊕

⊕

⊕

⊕⊕

⊕

⊕

⊕
⊕

⊕

⊕ ⊕
⊕

⊕⊕⊕

⊕

⊕ actions/inconsistency

Figure 7.2: Repairs depending on the Model Size

7.3 Performance and Scalability — RQ 3

Finally, we evaluated if the approach can be used to work interactively. Two aspects are
evaluated to answer research question RQ 3: 1) the memory consumption of the approach
depending on the model size, and 2) the response time of the approach depending on
the model size and constraint complexity (validation tree size). For the evaluations we
used the prototype implementation for the IBM Rational Software Architect for UML
and OCL introduced in Chapter 6. The prototype was running on an Intel Core 2 Quad
CPU @2.83GHz with 8GB (4GB available for the RSA) RAM and 64bit Linux (3.1.9).

0

2

4

6

8

10

12

14

101 102 103 104 105

Validation Tree Size [#Nodes]

#
R

ep
ai

rs

+

+

+

+

+

+ +

+

+

+

+

+

C14

C09

C17

C10

C03

C08

C16

C07

C01

C11 C13

C15

Figure 7.3: Repairs depending on the Validation Tree Size

97



7. EVALUATION AND DISCUSSION

Nr Memory Overhead [MB]
Complete CiM MDT OCL

1 2 2 1

2 20 10 7

3 29 13 9

4 16 12 7

5 53 18 10

6 150 43 4

7 97 34 5

8 74 14 3

9 169 93 6

10 250 17 4

11 97 19 4

12 67 23 6

13 175 110 7

14 145 65 5

15 267 53 6

16 72 36 7

17 188 106 7

18 417 130 6

19 359 87 5

20 227 129 8

21 326 79 6

22 108 53 3

23 973 129 7

24 1,353 97 7

25 860 513 20

26 N.A. 259 11

27 752 434 21

28 N.A. 172 58

29 N.A. 382 111

30 N.A. 724 61

Table 7.3: Memory Overhead Compared to MDT OCL

7.3.1 Memory Consumption

The basic data structure used in the CiM approach is the validation tree that must be
cached in memory. Similar to the RETE algorithm [50], the cached data structure is used
primary for the fast re-validation. To generate the repairs it is not necessary to keep all
the validation trees but unfortunately to calculate the side effects most of the validation
trees must be kept in memory, which results in an increased memory consumption.

The memory consumption was measured using the Runtime interface of Java. Before
measuring the memory the garbage collector was activated running gc(). To reduce
the uncertainty the measurements were repeated five times and the median was taken.
Additional, on a random basis the results were double-checked using the TPTP profiler
for Eclipse. The memory consumption was measured after the initial validation of all
constraints on the models.

98



7.3 Performance and Scalability — RQ 3

In Table 7.3 the results of the memory evaluation is shown. In the first column the
model number is shown. The second column show the memory usage for the validation
trees without optimization, i. e., the complete validation tree without scope and cause
optimization was used. This would be the case if the basic idea of the RETE algorithm
would be used. As can be seen, the amount of memory increases very fast and for the
larger models the amount of available memory was not enough for the tool.

The third column shows the amount of memory used by the validation trees from
used by the CiM Approach. Especially for larger models the memory consumption could
be reduced significantly, such that it was possible to evaluate even the larger models.
Only during the calculation of the side effects for randomly seeded inconsistencies (shown
in the next section) for the largest model the tool was running out of memory.

The last column shows the memory consumption using the MDT OCL environment.
MDT OCL uses the least amount of memory, however, if MDT OCL is used the incre-
mental characteristics get lost and the generation of appropriate repairs including their
side effects will not work.

7.3.2 Response Time and Scalability

Finally we evaluated the response time and the scalability regarding the model size and
the validation tree size of the proposed approach. For that purpose we randomly seeded
50 changes in each model and repeated each change ten times to reduce environmental
effects such as, for example, the garbage collector. The measurements were done using
System.nanoTime() (resolution 1µs). We compared the approach to the MDT OCL
environment of Eclipse. Comparing this approach to others would not be appropriate
because it is very hard to evaluate them using the same environment and models to
compare. Thus, we are concentrating on the measurements on a normal desktop en-
vironment and evaluate if the times to detect inconsistencies and propose solutions to
resolve them are sufficient for the practical use (Miller [72]).

In Figure 7.4 the re-validation times (without repair and side effect generation time)
for the random changes are shown. As can be seen the re-validation time of the CiM

approach is only the tenth of the re-validation of the MDT OCL environment. The re-
validation increases slightly with the size of the model. However, the time never exceeds
1ms.

In Figure 7.5 the re-validation time depending on the validation tree is shown. As
can be seen here, the re-validation time for the MDT OCL environment increases much
more with the size of the validation tree or in the case of the MDT OCL environment
the complexity of the constraint. Therefore, we see the strength of our approach which
is rooted in the re-validation of complex constraints, hence it is not only independent of
the model size but also independent of the constraint.

Figure 7.6 shows the time it takes to generate the repairs and calculate their side
effects. As can be seen the generation of the repairs takes about 1ms independent of the
model size. The calculation of the side effects takes much longer, in average about 10ms
and up to 30ms. However, the calculation is also nearly independent of the model size,
hence the calculation of the side effects scales on large models.

99



7. EVALUATION AND DISCUSSION

10−3

10−2

10−1

100

101

101 102 103 104 105

Model Size [#Elements]

[m
s]

×

×

× ×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

× ×

×

Optimized

+

+

+

+

+
+

+

++

+

+
+
+

+

+
+
+

+

++

+

+

+

+

+

+
+

+

+
+

+

MDT OCL

Figure 7.4: Re-Validation Time Depending on the Model Size

Finally we analyzed the generation of the repairs and the calculation of the side effects
depending on the validation tree size. In Figure 7.7 we can see that the generation of
the repairs is in average below 1ms for each constraint. However, the calculation of the
side effects exceeds 100ms for particular constraints, in the worst case it takes about
500ms. Fortunately, after manual inspection such cases are very rare (below 1% of all
validations) and happened in large models only.

When we summarize all the evaluations (re-validation, repair generation and side
effect calculation) we observe that 99% of the validations, generations and calculations
are done in less then 100ms and in 90% of all cases even in less than 1ms. With some
limitations we also could answer research question RQ 3.

10−3

10−2

10−1

100

101

100 101 102 103 104

Validation Tree Size [#Nodes]

[m
s]

×

× ×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

Optimized

+

+
+

+

+

+ +

+

+

+

+

++

+

+

+

+

+

+

MDT OCL

Figure 7.5: Re-Validation Time Depending on the Validation Tree Size

100



7.4 Limitations of the Approach

10−2

10−1

100

101

102

101 102 103 104

Model Size [#Elements]

[m
s]

×
×

×

×

×

×

××

×

××

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×××

×

×

× Repair Generation
+

+

+

+
+

+

++

+

+
+
+

+

+
+
+

+

++

+

+

+

+

+

+
+

+

+
+

+
+ Side Effect Calculation

Figure 7.6: Repair Generation and Side Effect Calculation Depending on the Model Size

7.4 Limitations of the Approach

The evaluation show the potential of the CiM approach. However, it has also shown
its limitations. For all the three research questions that we have answered we found the
limitations of the approach.

7.4.1 Limitation in the General Applicability

During the implementation of the prototype the first limitations and difficulties were
detected when the constraint language provide some special operations, like, for example,
a select (from OCL) or the allParents property from UML. In these cases special

10−2

10−1

100

101

102

103

101 102 103 104 105

Validation Tree Size [#Nodes]

[m
s]

×

× ×××

×

×

××

×

×

×

×

Repair Generation
+

+

+

+

+

+

+

+

+

+

+ +

+

Side Effect Calculation

Figure 7.7: Repair Generation and Side Effect Calculation Depending on the Validation
Tree Size

101



7. EVALUATION AND DISCUSSION

adaptions to the reasoner had been made, so that these types of expressions can be used
in the reasoner. Although, a solution was found, it can be expected that other constraint
languages may lay down additional special requirements to the implementation.

7.4.2 Limitations in Appropriateness

For the second research research question we only encountered limitations in the appro-
priateness. Limitations of the correctness would make the approach obsolete, because
false results are not an option. As we use only the validation behavior of the constraint
for our reasoner, some potential repairs cannot be provided to the designer. In the case
of the example used in Chapter 5 (Constraint 1 validated on the Message wait), an ap-
propriate repair would be the introduction of a super class that has an Operation named
‘wait‘. But, as the constraint does not explicitly searches for super classes, no repair
can be suggested that introduces a new Class with an Operation wait. Considering
the design and modeling language could improve this situation, however doing so would
restrict the general applicability. Fortunately, the approach itself does not restrict the
freedom of extending it in a special implementation. Therefore, the focus of this thesis
is a general applicable approach that can be implemented for user specific needs.

7.4.3 Limitations in Performance and Scalability

The needed memory constitutes the main limitation of the presented approach. Dur-
ing developing the approach this problem was encountered very early and therefore we
developed the optimization for the scope and cause. Fortunately, this optimization re-
sulted in not only memory improvements but also in improvements for the re-validations
(smaller scopes cause fewer re-validations). However, the memory consumption is the
main disadvantage of this approach and further optimizations must be made. A tighter
integration of the approach in a used tool might also improve this situation, because
identical data structures were build twice — one time in the tool itself and one time
for the approach (e. g., model elements — in the design tool and the scope — in the
prototype implementation).

7.5 Summary

In this chapter the CiM approach introduced in this thesis was evaluated. The evalua-
tions were done mostly empirically based on the prototype tool implementation for UML
and OCL. 30 UML models of different sizes were used and 20 OCL well formedness rules
to ensure that the two of three research questions can be answered. Furthermore, the
encountered limitations of our approach were also discussed.

102



Chapter 8

Conclusion and Ongoing Work

“You are never too old to set another goal or to dream a new dream.”
C. S. Lewis, British Author, 1898-1963

In this chapter we briefly summarize the problems addressed in this thesis and how
they were solved, as well as the results from the evaluation of the solution. Furthermore,
a brief outlook is given about ongoing work, as well as planned topics based on the
introduced approach.

8.1 Conclusion

Inconsistencies or missed expectations in a delivered software product are annoying for
both, the customer and the developer. For the customer because she needs the software,
had to pay for it and if it does not fulfill the expectations, the result would be increasing
costs and a delayed application of the software. For the developer because she must
repair the software, which comes also with increasing costs and time that can be spent
on new projects. However, it is science fiction to assume that developers will immediately
fully understand the customer and environmental requirements. Therefore, in this thesis
an approach is introduced that should help to improve the understanding and validation
of the customer needs early in the development process to increase the customer and
developer satisfaction.

In this thesis an approach for managing the consistency regarding customer require-
ments and environmental requirements, like for instance the used design or programming
languages. The approach was design to be applicable in different domains in the soft-
ware development process, but with the primary focus on the design and modeling phase
at a very early stage in the development process. A key requirement of the presented
approach was to provide a fast response about the state of the design model, i. e., instant
feedback when an inconsistency was detected and supporting the designer with infor-
mation how to resolve it. Furthermore, the designer must be able do define constraints
based on a common used constraint language do define all the aspects that a software
product must fulfill.

103



8. CONCLUSION AND ONGOING WORK

Existing work in the domain of consistency management often focuses on one par-
ticular design language and constraint language. Moreover, the used constraints are
often hard coded or it is very hard to write new constraints because a specially designed
constraint language is used. Recent work on consistency management comes with new
technologies that address some of the problems that were solved in this thesis. However,
they address a single problem, but do not cover the complete spectrum, e. g., an incre-
mental consistency checker that is able to resolve inconsistencies based on an arbitrary
set of constraints in a general context – that’s what this thesis focused on.

The presented approach works with a constraint language that is based on the basic
concepts of first order logic, i. e., any language can be used as a constraint language
that is based on the basic principles of first order logic, like, for example, OCL. It is not
limited and designed for one specific constraint language, as other work on this domain
(e. g., [110], [74]). Furthermore, the only restrictions set for the design language are that
it can be expressed as an interrelated set of elements containing properties on the meta
level, like the UML. The incremental reasoning is based on a scope based approach.

For the basic logical expressions the parts were determined that are responsible
for their validation result (it is not necessary to validate every argument of a logical
expression to determine a correct result) to optimize the re-validation effort. Each logical
expression comes also with the functionality what parts caused a violation based on an
expected result (is true for the whole constraint but can be differ for the arguments)
and the actual validation result. Aside the basic logical expression, whose arguments
and result are Boolean values, expressions exist that access properties of elements in,
for example, the software model. Using the accessed model elements, the expected and
validated result, the repairs to resolve a detected inconsistency are generated.

As already mention in existing work, a repair for an inconsistency can have theo-
retically an infinite number of choices. Therefore, data structures are developed that
provide a manageable visualization of the proposed solutions. The basic data structure
for the (re)-validation is the validation tree and for resolving inconsistencies the repair
tree. The validation tree represents the validation of a constraint with the expressions
as nodes and the branches as their relations. The leaves of the validation tree are ex-
pression that access properties of model elements or constant defined in the constraint.
Out of a validation tree that is violated (validates to false – inconsistency) the repair
tree is generated. The nodes of the repair tree are alternative (one of the alternatives
must be chosen to resolve an inconsistency) or combination (from all branches an action
must be take to resolve an inconsistency) nodes. The leaves of the repair tree are the
actions that must be executed in the model.

An action to repair an inconsistency can be an addition, deletion or modification of
an element property. Furthermore, to execute repair actions in a model a value must be
known of how to modify the addressed element property. Unfortunately, it is not always
possible to determine an unique value that is applicable. Therefore user intervention is
needed resolving such inconsistencies and only a suggestion to the designer can be given.

A repair action does not only have an influence on the constraint validation that
is violated, but also on the constraint validation that accesses the element property

104



8.2 Ongoing Work

that will be changed. Such effects we call side effect. A side effect can resolve another
inconsistency or cause an addition inconsistency. Moreover, side effects are used to
determine values for repair actions where no direct value could be determined in the
repair tree generation process.

The approach was implemented as an Eclipse based plugin for the IBM Rational
Software Architect for UML and OCL. The evaluations of the approach were done using
the tool implementation and have shown that it is possible to generate a generalizable
approach that is able to detect inconsistencies, propose solutions to resolve them and
calculating their side effects in a reasonable amount of time so that it can be used
for interactive work. Unfortunately, during the implementation and evaluation, the
limitations of that approach were made clear – the memory consumption for larger
models. However, further optimization and tighter tool integration can improve the
memory management.

8.2 Ongoing Work

The approach presented in this work actually is used in different domains. Since a few
years it is used in the domain of product line engineering to validate the consistency
of product lines. The most recent work using this approach is on evolving constraints,
i. e., where the constraints evolve with changes in the meta model. Another application
of that approach is in the mechatronics domain where the consistency among different
tools is validated. One work focuses on the validation of Java programs during run-time,
if arbitrary definable constraints are fulfilled, without annotating the source code (e. g.,
assertions). In a very early stage is an application that uses this approach in a multi-
user environment, where different users are working at the same time at different but
interrelated parts of a model.

Aside from the different application domains, an important topic is the optimization
of the approach regarding the memory usage. This would be one of the most important
tasks for this approach to be productively applicable in a wide range of domains, not
only in the software development process.

105



8. CONCLUSION AND ONGOING WORK

106



References

[1] S-DAGs: Towards Efficient Document Repair Generation. CCCT 2004, 2004. 34

[2] Welcome to NetBeans. http://netbeans.org/, 2012. 3, 5

[3] Manifesto for Agile Software Development. http://agilemanifesto.org/,
2001. 2

[4] Marcos Almeida da Silva, Alix Mougenot, Xavier Blanc, and Reda

Bendraou. Towards Automated Inconsistency Handling in Design Mod-
els. In Barbara Pernici, editor, Advanced Information Systems Engineering,
6051 of Lecture Notes in Computer Science, pages 348–362. Springer Berlin /
Heidelberg, 2010. 34

[5] Kerstin Altmanninger, Gerti Kappel, Angelika Kusel, Werner Rets-

chitzegger, Martina Seidl, Wieland Schwinger, and Manuel Wimmer.
AMOR - Towards Adaptable Model Versioning. In 1st International Work-
shop on Model Co-Evolution and Consistency Management (MCCM’08), Work-
shop at MODELS’08, Toulouse, France, 2008. 30

[6] Ken Arnold and James Gosling. The Java Programming Language. Addison-
Wesley, 1996. 30

[7] Robert Balzer. Tolerating Inconsistency. In ICSE, pages 158–165, 1991. 4,
24, 34

[8] J. Barwise. An introduction to first-order logic. Studies in Logic and the
Foundations of Mathematics, 90:5–46, 1977. 8, 16

[9] K. Beck and E. Gamma. Test Infected: Programmers Love Writing
Tests. Java Report, 3(7):51–56, 1998. 36

[10] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004. 2

[11] Matthias Biehl and Welf Löwe. Automated Architecture Consistency
Checking for Model Driven Software Development. In Raffaela Mi-

randola, Ian Gorton, and Christine Hofmeister, editors, QoSA, 5581 of
Lecture Notes in Computer Science, pages 36–51. Springer, 2009. 31

107



REFERENCES

[12] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, ed-
itors. Handbook of Satisfiability, 185 of Frontiers in Artificial Intelligence and
Applications. IOS Press, 2009. 31

[13] Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom Mens. De-
tecting model inconsistency through operation-based model construc-
tion. In ICSE ’08: Proceedings of the 30th international conference on Software
engineering, pages 511–520, New York, NY, USA, 2008. ACM. 33

[14] Barry W. Boehm. Software Engineering. IEEE Trans. Computers, C-
25:1226–1241, 1976. 1

[15] Barry W. Boehm. Software engineering economics. Prentice-Hall advances in
computing science and technology series. Prentice-Hall, 1981. xiii, 2, 3

[16] Barry W. Boehm. A spiral model of software development and enhance-
ment. Computer, 21(5):61–72, 1988. 1

[17] Barry W. Boehm and Victor R. Basili. Software Defect Reduction Top
10 List. IEEE Computer, 34(1):135–137, 2001. 2

[18] Barry W. Boehm and Alexander Egyed. WinWin requirements ne-
gotiation processes: A multi-project analysis. In Proceedings of the 5th
International Conference on Software Processes, 1998. 30

[19] Barry W. Boehm, Paul Grünbacher, and Robert O. Briggs. EasyWin-
Win: a groupware-supported methodology for requirements negotia-
tion. In Proceedings of the 23rd International Conference on Software Engineering,
ICSE ’01, pages 720–721, Washington, DC, USA, 2001. IEEE Computer Society.
5, 16, 30

[20] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Ko-
rat: automated testing based on Java predicates. In ISSTA, pages 123–133,
2002. 36

[21] Lionel C. Briand, Yvan Labiche, and L. O’Sullivan. Impact Analysis
and Change Management of UML Models. In ICSM, pages 256–265. IEEE
Computer Society, 2003. 35

[22] Petra Brosch, Martina Seidl, Konrad Wieland, Manuel Wimmer, and

Philip Langer. We can work it out: Collaborative Conflict Resolution
in Model Versioning, 2009. 30

[23] Jordi Cabot and Ernest Teniente. Incremental Evaluation of OCL
Constraints. In Eric Dubois and Klaus Pohl, editors, CAiSE, 4001 of
Lecture Notes in Computer Science, pages 81–95. Springer, 2006. 33

108



REFERENCES

[24] Laura A. Campbell, Betty H. C. Cheng, William E. McUmber, and

Kurt Stirewalt. Automatically Detecting and Visualising Errors in
UML Diagrams. Requir. Eng., 7(4):264–287, 2002. 31

[25] Peter Pin-Shan Chen. The entity-relationship model: toward a unified
view of data. SIGIR Forum, 10(3):9–9, December 1975. 8, 87

[26] Betty H. C. Cheng, Enoch Y. Wang, and Robert H. Bourdeau. A
Graphical Environment for Formally Developing Object-Oriented Soft-
ware. In ICTAI, pages 26–32, 1994. 32

[27] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and

Marco Roveri. NUSMV: A New Symbolic Model Checker. STTT,
2(4):410–425, 2000. 31

[28] Alessandro Cimatti, Marco Roveri, Angelo Susi, and Stefano

Tonetta. Formalizing requirements with object models and temporal
constraints. Software and System Modeling, 10(2):147–160, 2011. 31

[29] Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-
based model templates against well-formedness OCL constraints. In
Stan Jarzabek, Douglas C. Schmidt, and Todd L. Veldhuizen, editors,
GPCE, pages 211–220. ACM, 2006. 11, 31

[30] Hoa Khanh Dam and Michael Winikoff. Supporting change propagation
in UML models. In ICSM, pages 1–10. IEEE Computer Society, 2010. 35

[31] Khanh Hoa Dam. Supporting Software Evolution in Agent Systems. PhD dis-
sertation, RMIT University, Melbourne, Victoria, Australia, School of Computer
Science and Information Technology, August 2008. 35

[32] Khanh Hoa Dam and Michael Winikoff. Cost-based BDI plan selection
for change propagation. In Lin Padgham, David C. Parkes, Jörg P.

Müller, and Simon Parsons, editors, AAMAS (1), pages 217–224. IFAAMAS,
2008. 35

[33] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962. 31, 36

[34] Andreas Demuth, Roberto E. Lopez-Herrejon, and Alexander Egyed.
Cross-layer modeler: a tool for flexible multilevel modeling with con-
sistency checking. In Tibor Gyimóthy and Andreas Zeller, editors, SIG-
SOFT FSE, pages 452–455. ACM, 2011. 88

[35] Deepak Dhungana, Rick Rabiser, Paul Grünbacher, Klaus Lehner, and

Christian Federspiel. DOPLER: An Adaptable Tool Suite for Product
Line Engineering. In SPLC (2), pages 151–152. Kindai Kagaku Sha Co. Ltd.,
Tokyo, Japan, 2007. 88

109



REFERENCES

[36] S. Easterbrook and B. Nuseibeh. Using ViewPoints for inconsistency
management. Software Engineering Journal, 11(1):31–43, January 1996. 33

[37] Steve M. Easterbrook and Bashar Nuseibeh. Managing inconsistencies
in an evolving specification. In RE, pages 48–55. IEEE Computer Society, 1995.
32

[38] Inc. Eclipse Foundation. Eclipse - The Eclipse Foundation open source
community website. http://www.eclipse.org/, 2012. 3, 5

[39] Alexander Egyed. Instant Consistency Checking for the UML. ACM,
2006. 4, 5, 9, 11, 20, 22, 33, 59, 88

[40] Alexander Egyed. Fixing Inconsistencies in UML Design Models. In
ICSE, pages 292–301. IEEE Computer Society, 2007. 4, 24, 35, 74

[41] Alexander Egyed, Emmanuel Letier, and Anthony Finkelstein. Gener-
ating and Evaluating Choices for Fixing Inconsistencies in UML Design
Models. In ASE, pages 99–108. IEEE, 2008. 4, 5, 35

[42] Bassem Elkarablieh and Sarfraz Khurshid. Juzi: a tool for repairing
complex data structures. In Wilhelm Schäfer, Matthew B. Dwyer, and

Volker Gruhn, editors, ICSE, pages 855–858. ACM, 2008. 36

[43] Andy Evans, Robert B. France, Kevin Lano, and Bernhard Rumpe.
The UML as a Formal Modeling Notation. In Jean Bézivin and Pierre-

Alain Muller, editors, UML, 1618 of Lecture Notes in Computer Science, pages
336–348. Springer, 1998. 30

[44] Carles Farré, Ernest Teniente, and Toni Urpí. Checking query con-
tainment with the CQC method. Data Knowl. Eng., 53(2):163–223, 2005.
31

[45] Anthony Finkelstein, Dov M. Gabbay, Anthony Hunter, Jeff Kramer,

and Bashar Nuseibeh. Inconsistency Handling in Multi-Perspective
Specifications. In ESEC ’93: Proceedings of the 4th European Software En-
gineering Conference on Software Engineering, pages 84–99, London, UK, 1993.
Springer-Verlag. 32

[46] Anthony Finkelstein, Dov M. Gabbay, Anthony Hunter, Jeff Kramer,

and Bashar Nuseibeh. Inconsistency Handling in Multperspective Spec-
ifications. IEEE Trans. Software Eng., 20(8):569–578, 1994. 4

[47] Anthony Finkelstein and Colin Potts. Formalizing Requirements Sys-
tematically. In Roland Wagner, Roland Traunmüller, and Heinrich C.

Mayr, editors, EMISA, 143 of Informatik-Fachberichte, pages 44–57. Springer,
1987. 30

110



REFERENCES

[48] Anthony Finkelstein and Ian Sommerville. The Viewpoints FAQ. Soft-
ware Engineering Journal: Special Issue on Viewpoints for Software Engineering,
11(1):2–4, 1996. 29

[49] International Organisation for Standardization. ISO/IEC 9899:1999.
http://www.iso.org/iso/catalogue_detail.htm?csnumber=29237, 1999. 23

[50] C.L. Forgy. Rete: A Fast Algorithm for the Many Pattern / Many
Object Pattern Match Problem. Artificial Intelligence, 19:17–37, 1982. 22,
27, 59, 98

[51] Iris Groher, Alexander Reder, and Alexander Egyed. Incremental
Consistency Checking of Dynamic Constraints. In David S. Rosenblum

and Gabriele Taentzer, editors, FASE, 6013 of Lecture Notes in Computer
Science, pages 203–217. Springer, 2010. 9, 33, 88

[52] John Grundy, John Hosking, and Warwick B. Mugridge. Inconsistency
Management for Multiple-View Software Development Environments.
IEEE Transactions on Software Engineering, 24:960–981, 1998. 32

[53] Volker Haarslev and Ralf Möller. High Performance Reasoning with
Very Large Knowledge Bases: A Practical Case Study. In Bernhard

Nebel, editor, IJCAI, pages 161–168. Morgan Kaufmann, 2001. 32

[54] A.N. Habermann and D. Notkin. Gandalf: Software development envi-
ronments. IEEE transactions on software engineering, 12(12):1117–1127, 1986.
4

[55] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Language
Specification. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003. 30

[56] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM
Trans. Softw. Eng. Methodol., 11(2):256–290, April 2002. 4, 8

[57] Simon M. Kaplan and Gail E. Kaiser. Incremental Attribute Evaluation
in Distributed Language-based Environments. In 5th ACM Symp. on Prin-
ciples of Distributed Computing, pages 121–130. ACM press, Calgary, August 1986.
See also: report UIUCDCS-R-86-1294, University of Illinois at Urbana-Champaign
(September 1986). 4

[58] Brian W. Kernighan. The C Programming Language. Prentice Hall Professional
Technical Reference, 2nd edition, 1988. 30

[59] Dae-Kyoo Kim and Jon Whittle. Generating UML Models from Do-
main Patterns. In SERA, pages 166–173. IEEE Computer Society, 2005. 33

111



REFERENCES

[60] H. Kitapci and Barry W. Boehm. Using a Hybrid Method for Formaliz-
ing Informal Stakeholder Requirements Inputs. In Comparative Evaluation
in Requirements Engineering, 2006. CERE ’06. Fourth International Workshop
on, pages 48–59, sept. 2006. 31

[61] R. Kowalski. Logic for Problem-solving. DCL Memo 75, 1974. 33

[62] Christian Lange and Michel R. V. Chaudron. An Empirical Assesment
of Completeness in UML Design. In Proceedings of the 8th Conference on
Empirical Assessment in Software Engineering (EASE04), 2004. 30

[63] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A Notation
for Detailed Design, 1999. 36

[64] Daniela Lettner, Peter Hehenberger, Alexander Nöhrer, Klaus

Anzengruber, Paul Grünbacher, Michael Mayrhofer, and Alexander

Egyed. Variability and Consistency in Mechatronic Design. In The Sev-
enth International Workshop on Variability Modelling of Software-intensive Sys-
tems, VaMoS 2013, Under Submission, 2013. 88

[65] Mark H. Liffiton and Karem A. Sakallah. Algorithms for Comput-
ing Minimal Unsatisfiable Subsets of Constraints. J. Autom. Reasoning,
40(1):1–33, 2008. 4

[66] Robert M. MacGregor. Inside the LOOM Description Classifier.
SIGART Bulletin, 2(3):88–92, 1991. 32

[67] Alan K. Mackworth. Consistency in Networks of Relations. Artif. Intell.,
8(1):99–118, 1977. 4

[68] H. Malgouyres and G. Motet. A UML model consistency verification
approach based on meta-modeling formalization. In Proceedings of the 2006
ACM symposium on Applied computing, SAC ’06, pages 1804–1809, New York, NY,
USA, 2006. ACM. 31

[69] Muhammad Zubair Malik, Junaid Haroon Siddiqui, and Sarfraz Khur-

shid. Constraint-Based Program Debugging Using Data Structure Re-
pair. In ICST, pages 190–199. IEEE Computer Society, 2011. 36

[70] Anders Mattsson, B Lundell, Brian Lings, and Brian Fitzgerald.
Linking Model-Driven Development and Software Architecture: A Case
Study. Software Engineering, IEEE Transactions on, 35(1):83–93, 2009. 30

[71] Tom Mens, Ragnhild Van Der Straeten, and Maja D’Hondt. Detect-
ing and Resolving Model Inconsistencies Using Transformation Depen-
dency Analysis. In Oscar Nierstrasz, Jon Whittle, David Harel, and

Gianna Reggio, editors, Model Driven Engineering Languages and Systems,

112



REFERENCES

4199 of Lecture Notes in Computer Science, pages 200–214. Springer Berlin /
Heidelberg, 2006. 4, 34

[72] Robert B. Miller. Response time in man-computer conversational
transactions. In Proceedings of the December 9-11, 1968, fall joint computer
conference, part I, AFIPS ’68 (Fall, part I), pages 267–277, New York, NY, USA,
1968. ACM. 5, 8, 99

[73] Christian Nentwich, Licia Capra, Wolfgang Emmerich, and Anthony

Finkelstein. xlinkit: A Consistency Checking and Smart Link Gener-
ation Service. ACM Trans. Internet Techn., 2(2):151–185, 2002. 4, 11, 22, 32,
35, 87

[74] Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein.
Consistency Management with Repair Actions. In ICSE, pages 455–464.
IEEE Computer Society, 2003. 4, 24, 35, 104

[75] Alexander Nöhrer, Armin Biere, and Alexander Egyed. Managing
SAT inconsistencies with HUMUS. In Ulrich W. Eisenecker, Sven

Apel, and Stefania Gnesi, editors, VaMoS, pages 83–91. ACM, 2012. 36

[76] Alexander Nöhrer, Alexander Reder, and Alexander Egyed. Positive
effects of utilizing relationships between inconsistencies for more effec-
tive inconsistency resolution. In Richard N. Taylor, Harald Gall, and

Nenad Medvidovic, editors, ICSE, pages 864–867. ACM, 2011. 26

[77] Ariadi Nugroho, Bas Flaton, and Michel R. V. Chaudron. Empirical
Analysis of the Relation between Level of Detail in UML Models and
Defect Density. In Krzysztof Czarnecki, Ileana Ober, Jean-Michel

Bruel, Axel Uhl, and Markus Völter, editors, MoDELS, 5301 of Lecture
Notes in Computer Science, pages 600–614. Springer, 2008. 30

[78] B. Nuseibeh, S. Easterbrook, and A. Russo. Leveraging inconsistency
in software development. IEEE Computer, 33(4):24–29, 2000. 29

[79] OMG. MOF 2.4.1 Specification. http://www.omg.org/spec/MOF/2.4.1/,
2012. xiii, 14, 15

[80] OMG. OCL 2.3.1 Specification. http://www.omg.org/spec/OCL/2.3.1/, 2012.
8, 16, 31

[81] OMG. UML 2.1 Specification. http://www.uml.org/, 2012. 8, 12

[82] Leon J. Osterweil, H. Dieter Rombach, and Mary Lou Soffa, editors.
28th International Conference on Software Engineering (ICSE 2006), Shanghai,
China, May 20-28, 2006. ACM, 2006. 35

113



REFERENCES

[83] Charles Pecheur, Jamie Andrews, and Elisabetta Di Nitto, editors.
ASE 2010, 25th IEEE/ACM International Conference on Automated Software En-
gineering, Antwerp, Belgium, September 20-24, 2010. ACM, 2010. 114, 116

[84] Michael Pilato. Version Control With Subversion. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2004. 30

[85] Dan Pilone and Neil Pitman. UML 2.0 in a Nutshell (In a Nutshell
(O’Reilly)). O’Reilly Media, Inc., 2005. 11

[86] Derek Robert Price. CVS Concurrent Versions System.
http://www.nongnu.org/cvs. 30

[87] Anna Queralt and Ernest Teniente. Reasoning on UML Class Dia-
grams with OCL Constraints. In David W. Embley, Antoni Olivé, and

Sudha Ram, editors, ER, 4215 of Lecture Notes in Computer Science, pages
497–512. Springer, 2006. 31

[88] Alexander Reder. Inconsistency management framework for model-
based development. In Richard N. Taylor, Harald Gall, and Nenad

Medvidovic, editors, ICSE, pages 1098–1101. ACM, 2011. 9, 24

[89] Alexander Reder and Alexander Egyed. Model/Analyzer: A Tool for
Detecting, Visualizing and Fixing Design Errors in UML. In Pecheur et al.
[83], pages 347–348. 10, 24, 79

[90] Alexander Reder and Alexander Egyed. Computing Repair Trees for
Resolving Inconsistencies in Design Models. In ASE. ACM, 2012. 4, 9, 10,
50, 67

[91] Alexander Reder and Alexander Egyed. Determining the Cause of a
Design Model Inconsistency. Software Engineering, IEEE Transactions on,
2012. Major Revision. 10, 24, 62

[92] Alexander Reder and Alexander Egyed. Incremental Consistency
Checking for Complex Design Rules and Larger Model Changes. In
Models, Lecture Notes in Computer Science. Springer, 2012. 4, 5, 10, 27

[93] Steven P. Reiss. Incremental Maintenance of Software Artifacts. IEEE
Trans. Softw. Eng., 32(9):682–697, 2006. 32

[94] Jason Elliot Robbins. Cognitive Support Features for Software Development
Tools. PhD dissertation, University of California, Irvine, 1999. 32

[95] Jason Elliot Robbins. ArgoUML, v0.32.1. http://argouml.tigris.org/,
March 2011. 4, 11, 32

[96] P. Rook. Controlling software projects. Software Engineering Journal, 1(1):7,
1986. 1

114



REFERENCES

[97] Winston W. Royce. Managing the Development of Large Software Sys-
tems: Concepts and Techniques. In Technical Papers of Western Electronic
Show and Convention (WesCon), 1970. 1

[98] Jan Scheffczyk, Peter Rödig, Uwe M. Borghoff, and Lothar Schmitz.
Managing inconsistent repositories via prioritized repairs. In Ethan V.

Munson and Jean-Yves Vion-Dury, editors, ACM Symposium on Document
Engineering, pages 137–146. ACM, 2004. 34

[99] Ken Schwaber. SCRUM Development Process. In Proceedings of the 10th
Annual ACM Conference on Object Oriented Programming Systems, Languages,
and Applications (OOPSLA, pages 117–134, 1995. 2

[100] Bran Selic. A Systematic Approach to Domain-Specific Language De-
sign Using UML. In ISORC, pages 2–9. IEEE Computer Society, 2007. 33

[101] George Spanoudakis and Andrea Zisman. Inconsistency management in
software engineering: Survey and open research issues. In in Handbook of
Software Engineering and Knowledge Engineering, pages 329–380. World Scientific,
2001. 29

[102] Ragnhild Van Der Straeten and Maja D’Hondt. Model refactorings
through rule-based inconsistency resolution. In Hisham Haddad, editor,
SAC, pages 1210–1217. ACM, 2006. 34

[103] Ragnhild Van Der Straeten, Tom Mens, Jocelyn Simmonds, and Vi-

viane Jonckers. Using Description Logic to Maintain Consistency be-
tween UML Models. In Perdita Stevens, Jon Whittle, and Grady

Booch, editors, UML, 2863 of Lecture Notes in Computer Science, pages 326–
340. Springer, 2003. 32, 34

[104] Ragnhild Van Der Straeten, Jocelyn Simmonds, and Tom Mens. De-
tecting Inconsistencies between UML Models Using Description Logic.
In Diego Calvanese, Giuseppe De Giacomo, and Enrico Franconi, ed-
itors, Description Logics, 81 of CEUR Workshop Proceedings. CEUR-WS.org,
2003. 11, 32

[105] Bjarne Stroustrup. The C++ Programming Language, Third Edition.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition,
1997. 30

[106] M. H. Van Emden and R. A. Kowalski. The Semantics of Predicate Logic
as a Programming Language. J. ACM, 23:733–742, October 1976. 33

[107] Michael Vierhauser, Deepak Dhungana, Wolfgang Heider, Rick Ra-

biser, and Alexander Egyed. Tool Support for Incremental Consistency
Checking on Variability Models. In David Benavides, Don S. Batory,

115



REFERENCES

and Paul Grünbacher, editors, VaMoS, 37 of ICB-Research Report, pages
171–174. Universität Duisburg-Essen, 2010. 88

[108] Michael Vierhauser, Paul Grünbacher, Alexander Egyed, Rick Ra-

biser, and Wolfgang Heider. Flexible and scalable consistency check-
ing on product line variability models. In Pecheur et al. [83], pages 63–72.
9, 88

[109] Jessica Winkelmann, Gabriele Taentzer, Karsten Ehrig, and

Jochen Malte Küster. Translation of Restricted OCL Constraints into
Graph Constraints for Generating Meta Model Instances by Graph
Grammars. Electr. Notes Theor. Comput. Sci., 211:159–170, 2008. 31

[110] Yingfei Xiong, Zhenjiang Hu, Haiyan Zhao, Hui Song, Masato Take-

ichi, and Hong Mei. Supporting automatic model inconsistency fixing. In
Hans van Vliet and Valérie Issarny, editors, ESEC/SIGSOFT FSE, pages
315–324. ACM, 2009. 4, 11, 35, 104

[111] Yingfei Xiong, Arnaud Hubaux, Steven She, and Krzysztof Czarnecki.
Generating range fixes for software configuration. In Martin Glinz,

Gail C. Murphy, and Mauro Pezzè, editors, ICSE, pages 58–68. IEEE, 2012.
36

[112] Chang Xu, Shing-Chi Cheung, and W. K. Chan. Incremental Consis-
tency Checking for Pervasive Context. In Leon J. Osterweil, H. Dieter

Rombach, and Mary Lou Soffa, editors, ICSE, pages 292–301. ACM, 2006.
22, 33

[113] Andrea Zisman and Alexander Kozlenkov. Knowledge Base Approach
to Consistency Management of UML Specification. In ASE, pages 359–363.
IEEE Computer Society, 2001. 32

116



Appendix A

Constraints

Constraint 5 Parent Class should not have an Attribute referring to a Child Class

context Class :
l e t c h i l d r e n : Set ( NamedElement ) = s e l f . namespace . oclAsType ( Package ) .

packagedElement−>
s e l e c t ( pe : PackageableElement | pe . oclIsTypeOf ( Class ) and

pe . oclAsType ( Class ) . a l l P a r e n t s ( )−>i n c l u d e s ( s e l f ) ) in
s e l f . ownedAttribute−>forAll (p : Property | p . type . oclIsTypeOf ( Class )

implies

ch i ld r en −>ex c ludes (p . type . oclAsType ( Class ) ) )

Constraint 6 Parent Class should not have an Operation with a Parameter referring
to a Child Class

context Class :
l e t c h i l d r e n : Set ( NamedElement ) = s e l f . namespace . oclAsType ( Package ) .

packagedElement−>
s e l e c t ( pe : PackageableElement | pe . oclIsTypeOf ( Class ) and

pe . oclAsType ( Class ) . a l l P a r e n t s ( )−>i n c l u d e s ( s e l f ) ) in
s e l f . ownedOperation−>forAll ( o : Operation | o . ownedParameter−>

forAll (p : Parameter | p . type . oclIsTypeOf ( Class ) implies

ch i ld r en −>ex c ludes (p . type . oclAsType ( Class ) ) ) )

117



A. CONSTRAINTS

Constraint 7 Message Direction must match Class Association

context Message :
s e l f . r e ce iv eEv ent . oclAsType ( Interact ionFragment ) . covered−>

exists ( l e t rc : Class=r e p r e s e n t s . type . oclAsType ( Class ) in
s e l f . sendEvent . oclAsType ( Interact ionFragment ) . covered−>

exists ( l e t sc : Class=r e p r e s e n t s . type . oclAsType ( Class ) in
sc . ownedAttribute−>exists ( a s s o c i a t i o n <>n u l l implies

type=rc ) ) )

Constraint 8 The connected Classifier of the Association End should be included in
the Namespace of the Association

context Assoc ia t ion :
s e l f . memberEnd<>n u l l and s e l f . memberEnd−>

forAll (p | p . type<>n u l l and p . type . namespace=s e l f . namespace )

Constraint 9 AssociationEnds must have unique Names within the Association

context Assoc ia t ion :
s e l f . memberEnd−>forAll ( p1 , p2 : Property | p1<>p2 implies p1 . name<>p2 . name

)

Constraint 10 At most one AssociationEnd may be an Aggregation or Composition

context Assoc ia t ion :
s e l f . memberEnd−>s i z e ( )>0 implies

s e l f . memberEnd−>s e l e c t (p | p . aggregat ion <>AggregationKind : : none )−>
s i z e ( )<=1

Constraint 11 A Class may use Unique Attribute Names

context Class :
s e l f . ownedAttribute−>forAll ( p1 , p2 : Property | p1<>p2 implies p1 . name<>p2

. name)

Constraint 12 A Classifier may not belong by Composition to more than one Composite
Classifier

context Property :
( s e l f . a s s o c i a t i o n <>n u l l and s e l f . aggregat ion=AggregationKind : :

composite ) implies

( s e l f . upper>=0 and s e l f . upper <=1)

118



Constraint 13 The Elements owned by a Namespace must have unique Names

context Package :
s e l f . packagedElement−>forAll ( e1 , e2 : PackageableElement | ( e1<>e2 )

implies ( e1 . name<>e2 . name) )

Constraint 14 An Interface can only contain Public Operations and no Attributes

context I n t e r f a c e :
s e l f . ownedAttribute−>forAll ( pr : Property | pr . a s s o c i a t i o n <>n u l l or

pr . v i s i b i l i t y=V i s i b i l i t y K i n d : : pub l i c ) and

s e l f . ownedOperation−>forAll ( o : Operation | o . v i s i b i l i t y=
V i s i b i l i t y K i n d : : pub l i c )

Constraint 15 No two Class Operations may have the same Signature

context Class :
s e l f . ownedOperation−>forAll ( o1 , o2 : Operation | o1<>o2 implies

( o1 . name <> o2 . name or o1 . ownedParameter−>s i z e ( ) <> o2 .
ownedParameter−>s i z e ( ) or

l e t ops1 : Collection (Type )=o1 . ownedParameter−>c o l l e c t ( type ) in
l e t ops2 : Collection (Type )=o2 . ownedParameter−>c o l l e c t ( type ) in

ops1−>exists ( t : Type | ops2−>ex c ludes ( t ) ) or ops2−>exists ( t :
Type | ops1−>ex c ludes ( t ) ) ) )

Constraint 16 Operation Parameters must have unique Names

context Operation :
s e l f . ownedParameter−>forAll ( p1 , p2 : Parameter | p1<>p2 implies p1 . name<>

p2 . name)

Constraint 17 The Type of Operation Parameters must be included in the Namespace
of the Operation Owner

context Operation :
s e l f . ownedParameter−>forAll (p : Parameter | p . type<>n u l l implies

p . type . namespace=s e l f . owner . oclAsType ( Class ) . namespace )

119



A. CONSTRAINTS

Constraint 18 The Parent must be included in the Namespace of the Generalizable
Element

context G e n e r a l i z a t i o n :
s e l f . source −>forAll ( e1 : Element | e1 . oc l I sKindOf ( NamedElement ) implies

s e l f . target −>forAll ( e2 : Element | e2 . oc l I sKindOf ( NamedElement ) and

e1 . oclAsType (NamedElement ) . namespace = e2 . oclAsType (NamedElement )
. namespace ) )

Constraint 19 No circular Inheritance allowed

context Class :
not s e l f . a l l P a r e n t s ( )−>i n c l u d e s ( s e l f )

Constraint 20 An Operation has at most one return Parameter

context Operation :
s e l f . ownedParameter−>s e l e c t (p : Parameter | p . d i r e c t i o n=

ParameterDirect ionKind : : r e tu rn )−>s i z e ( )<=1

120



Curriculum Vitae

Dipl.-Ing. Alexander Reder

Contact

University Johannes Kepler University, Linz

Department Institute for Systems Engineering and Automation

Phone +43 732 2468 4394

e-Mail mailto:alexander.reder@jku.at

web http://www.sea.jku.at

Education

10/2009-Present PhD Student, Johannes Kepler University, Linz,
Computer Science.
Automated Consistency Management Framework for the Model Based

Software Development

10/2007-09/2009 Dipl.-Ing., Johannes Kepler University, Linz,
Software Engineering.
Model Based Productline Engineering: Variability Modeling using the

Eclipse Modeling Framework and the Object Constraint Language

10/2004-09/2007 B.Sc., Johannes Kepler University, Linz,
Bachelor Study Computer Science.

121

mailto:alexander.reder@jku.at
http://www.sea.jku.at


A. CURRICULUM VITAE

Work Experience

04/2009-Present Researcher, Johannes Kepler University, Linz.
Consistency Management in Model-Based Software Development

10/2004-02/2012 Software Engineer, Self-employed, Linz.
Development and support of document output solutions

04/1998-09/2004 Service Support Engineer, Canon GmbH, Linz.
Service, support and installation of document output solutions

Teaching Experience

Winter Semester Johannes Kepler University, Linz.
2010/2011 Präsentations und Arbeitstechnik

Winter Semester Johannes Kepler University, Linz.
2011/2012 Präsentations und Arbeitstechnik

Summer Semester Johannes Kepler University, Linz.
2012 Engineering of Software-Intensive Systems

Winter Semester Johannes Kepler University, Linz.
2012/2013 Präsentations und Arbeitstechnik

Winter Semester Johannes Kepler University, Linz.
2012/2013 Software Engineering Übung

Language

German Mother tongue

English Proficiency

Spanish Basic knowledge

122


	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Starting Point
	1.2 Motivation
	1.3 Vision
	1.4 Research Questions
	1.5 Final Goal
	1.6 Intermediate Goals
	1.6.1 Building an Overview of Existing Work
	1.6.2 Approach to Detect Inconsistencies
	1.6.3 Generating Solutions to Repair the Detected Inconsistencies
	1.6.4 Preparation of the Repair Actions to Resolve the Inconsistencies
	1.6.5 Realization in a Software Tool

	1.7 Structure of the Thesis
	1.8 Summary

	2 Illustration, Background and Definitions
	2.1 Introductory Example
	2.1.1 Notation used in this Thesis
	2.1.2 Structural Diagrams
	2.1.3 Behavior Diagrams

	2.2 Domain Language Abstraction
	2.3 Constraints
	2.4 Constraint Structure
	2.4.1 Basic Constraint Elements
	2.4.2 Concrete Constraint Validation

	2.5 Incremental Consistency Checking
	2.6 Understanding an Inconsistency — What Caused an Inconsistency
	2.7 Repairing an Inconsistency
	2.7.1 Repairs
	2.7.2 Side Effects

	2.8 Keeping the Performance in Mind
	2.9 Summary

	3 Related Work
	3.1 Consistency Management
	3.2 Formalizing Requirements
	3.3 Detecting Inconsistencies
	3.4 Resolving Inconsistencies
	3.5 Summary

	4 Basic Principles
	4.1 Concept of Expected and Validated Results
	4.2 Boolean Expressions
	4.2.1 Conjunctions
	4.2.2 Negation
	4.2.3 Negated Conjunctions
	4.2.4 Disjunctions
	4.2.5 Implications
	4.2.6 Universal Quantifiers
	4.2.7 Existential Quantifiers
	4.2.8 Equality Relations
	4.2.9 Inequality Relations

	4.3 Property Call Expressions
	4.4 Summary

	5 CiM Approach
	5.1 Overview
	5.2 Stage 1: Validation
	5.3 Stage 2: The Scope
	5.3.1 Calculating The Scope
	5.3.2 Triggering a Re-Validation

	5.4 Stage 3: The Cause
	5.5 Stage 4: Repairs and Side Effects
	5.5.1 Repair Tree
	5.5.2 Side Effects

	5.6 Summary

	6 Tool Implementation
	6.1 IBM Rational Software Architect Integration
	6.2 Constraints
	6.3 Graphical Visualization
	6.4 Summary

	7 Evaluation and Discussion
	7.1 Generic Applicability — RQ 1
	7.1.1 Design Language
	7.1.2 Constraint Language

	7.2 Correctness and Appropriateness — RQ 2
	7.2.1 Correct Inconsistency Detection
	7.2.2 Correct Scope for Re-Validation
	7.2.3 Correct Cause Calculation
	7.2.4 Appropriateness of the Generated Repairs

	7.3 Performance and Scalability — RQ 3
	7.3.1 Memory Consumption
	7.3.2 Response Time and Scalability

	7.4 Limitations of the Approach
	7.4.1 Limitation in the General Applicability
	7.4.2 Limitations in Appropriateness
	7.4.3 Limitations in Performance and Scalability

	7.5 Summary

	8 Conclusion and Ongoing Work
	8.1 Conclusion
	8.2 Ongoing Work

	References
	A Constraints
	Curriculum Vitae

